

Axial piston variable pump A4VG Series 40

RE 92004

Edition: 02.2017 Replaces: 07.2016

- ► High-pressure pump for applications in a closed circuit up to 500 bar
- ▶ Size 110...280
- ► Nominal pressure 450 bar
- ► Maximum pressure 500 bar
- Closed circuit

Features

- ► High power density owing to a very high pressure level
- ▶ Integrated auxiliary pump for boost and pilot oil supply
- ► Flow direction changes smoothly when the swashplate is moved through the neutral position
- ► High-pressure relief valves with integrated boost function
- ► With adjustable pressure cut-off as standard
- ► Boost-pressure relief valve
- ► Through drive for mounting of further pumps up to same nominal size
- ► High total efficiency
- Large variety of controls
- ► Swashplate design

Contents

Type code	2
Hydraulic fluid	6
Hydraulic fluid	6
Working pressure range	7
Technical data	9
HP - Proportional control, hydr., pilot-pressure related	12
HW - Proportional control, hydr., mechanical servo	13
HT - Hydraulic control, direct operated	15
DA – Automatic control, speed related	16
EP - Proportional control, electric	19
EZ – Two-point control, electric	20
EV - Electric control, direct operated	21
ET - Electric control, direct operated	22
Dimensions, size 110 to 280	23
Dimensions, through drive	50
Overview of mounting options	53
Combination pumps A4VG + A4VG	54
High-pressure relief valves	55
Pressure cut-off	56
Bypass function	56
Neutral valve	57
Mechanical stroke limiter	58
Stroking chamber pressure port X ₃ and X ₄	59
Filtration in the boost pump suction line	60
Filtration in the boost pump pressure line	60
External boost pressure supply	62
Dimensions with mounted filter	63
Swivel angle sensor	64
Connector for solenoids	65
Pressure Sensor	66
Speed sensor	66
Installation dimensions for coupling assembly	67
Installation instructions	68
Project planning notes	71
Safety instructions	72

Type code

		03	04	05	06	07	7 08	09		10	11	12	13	14	15	16	17	18	19	20	21	22		23
A4V	G								1	40	М		N						Α		0		-	
Axial	pistor	n unit																						
01	Swas	hplate	desi	gn, va	riable,	, nor	minal pr	essur	e 450	bar, n	naxim	um pr	essur	e 500	bar									A4V
Opera	ating r	node																						
02	Pump	o, clos	ed cir	cuit																				G
Size ((NG)																							
03		netric	displa	ceme	nt, se	e "T	echnica	l data	" on p	age 9								110	125	145	175	210	280	
onti	rol dev																	110	125			210		'
04		ortion	al con	trol.		ni	lot-pres	sure r	elated	h n = 6	to 18	har						_	0	0	0	0	0	HP1
0.	hydra		ai 0011	,		_	echanic											_	•	•	•	•	•	HW2
							ith lever				0	_	with n	eutral	positi	ion sw	itch	_	•	•	•	•	•	HW8
	Hydra	aulic c	ontro	l, dire	ct ope	erate	ed											-	•	•	•	•	•	HT1
	Autor	natic (contro	ol, spe	ed rel	lated	b								<i>U</i> =	12 V		•	•	•	•	•	•	DA1
															<i>U</i> =	24 V		•	•	•	•	•	•	DA2
	Propo	ortion	al con	trol,											U =	12 V		•	•	•	•	•	•	EP1
	electi	electric $U =$											U =	24 V		•	•	•	•	•	•	EP2		
						wi	ith man	ual ov	erride	and s	pring	retur	n		U =	12 V		•	•	•	•	•	•	EP3
															U =	24 V		•	•	•	•	•	•	EP4
	Two-p	ooint o	contro	ol, elec	ctric										U =	12 V		•	•	•	•	•	•	EZ1
															U =	24 V		•	•	•	•	•	•	EZ2
	Electi	ric cor	ntrol,	direct	opera	ated	, 4/3-wa	ay dire	ction	al valv	e,				U =	12 V		•	•	•	•	0	0	EV1
	one p	ressu	re red	lucing	valve	(DR	RE)								U =	24 V		•	•	•	•	0	0	EV2
	Electi	ric cor	ntrol,	direct	opera	ated	, two pi	essur	e red	ucing v	valves	(DRE	()		U =	12 V		•	•	•	•	0	0	ET5
															U =	24 V		•	•	•	•	0	0	ET6
ress	ure cı	ıt-off																						
05	Witho	out pre	essure	e cut-c	off							V	withou	ıt byp	ass									0
													with b	ypass										С
	Press	ure cu	ıt-off,	with	bypas	s (no	ot for H	T)				F	ixed	setting	g, hydi	raulic,	mech	anica	I					D
Conn	ector	for so	lenoid	ds ¹⁾																				
06					ly for	pure	ely hydr	aulic d	contro	ol)														0
	DEUT	SCH r	nolde	d con	necto	r, 2-	pin – wi	thout	supp	ressor	diode	e												Р
Swive	el angl	e sens	sor																					
07		out sw		ngle s	ensor																			0
	Electi	ric sw	ivel ar	ngle s	ensor	(DW	/S20-1,	3-pin)	2)															R

• = Available	• =	Available	o = On request	- = Not available	= Preferred progra
---------------	-----	-----------	----------------	-------------------	--------------------

¹⁾ Connectors for other electric components may deviate.

²⁾ Please contact us if the swivel angle sensor is used for control

o = On request

= Available

W50×2×24×9

W55×2×26×9

- = Not available

•

•

= Preferred program

•

A2

АЗ

³⁾ Cannot be combined with EV or brake inch valve

4 **A4VG Series 40** | Axial piston variable pump Type code

01	02	03	04	05	06	07	08	09		10	11	12	13	14	15	16	17	18	19	20	21	22		23
A4V	G								/	40	М		N						Α		0		-	
Work	ing po	rt																						
16	SAE v	vorkin	g por	t A and	B , 01	n left	side	(45° lef	t)															1
	SAE v	vorkin	g por	t A and	B , 01	n righ	t side	(45° r	ight)	4)														2
Boost	t pump	and	rotary	y group	conf	figura	tion											110	125	145	175	210	280	
17	Stand	lard ro	otary	group		boos	st pur	np inte	grate	ed, sta	ındard	linte	nal ge	ar pu	mp			•	•	•	•	•	•	F
						boos	st pur	np inte	grate	ed, lar	ge int	ernal	gear p	ump				•	-	•	•	•	-	В
						with	out b	oost pı	ımp									•	•	•	•	•	•	U
	High-	speed	rotar	y group)	boos	st pur	np inte	grate	ed, sta	ındarc	linte	nal ge	ar pu	mp			•	-	•	•	-	-	V
						with	out b	oost pı	ımp									•	-	•	•	-	-	W
Throu	ıgh dri	ive ⁵⁾																110	125	145	175	210	280	
18	Witho		ough	drive														•	•	•	•	•	•	0000
	Flang	e SAE	J744					Hub for	spli	ned s	haft ⁶⁾										!		!	
	Diam	eter		Mount	ing ⁷⁾	Cod	e l	Diamet	er			(Code											
	82-2	(A)		8		A1	į	5/8 in	9	T 16/	32DP		52					•	-	•	•	_	0	A1S2
						A1		3/4 in	1	.1T 16	/32DF	,	33					•	-	•	•	•	•	A1S3
				0-0		A2		5/8 in	S	T 16/	32DP	(62					•	•	•	•	0	•	A2S2
						A2	;	3/4 in	1	.1T 16	/32DF	,	3					•	-	•	•	•	•	A2S3
	101-2	(B)		8		В1		7/8 in	1	.3T 16	/32DF) (64					•	•	•	•	•	•	B1S4
						В1	:	1 in	1	.5T 16	/32DF	,	S5					•	-	•	•	•	•	B1S5
				0-0		B2		7/8 in	1	.3T 16	/32DF	,	64					•	•	•	•	•	•	B2S4
						B2		1 in	1	.5T 16	/32DF		35					•	-	•	•	0	0	B2S5
				oo		B5		7/8 in	1	.3T 16	/32DF		64					•	-	•	0	0	0	B5S4
						B5		1 in	1	.5T 16	/32DF		S5					0	-	•	0	•	•	B5S5
	101-4	(B)		;;		B4		7/8 in	1	.3T 16	/32DF		64					0	-	•	0	•	0	B4S4
						B4		1 in	1	.5T 16	/32DF		S5					•	-	•	0	0	0	B4S5
	127-2	(C)		8		C1	:	1 in	1	.5T 16	/32DF		S5					-	-	0	-	-	-	C1S5
						C1		1 1/4 ir	1	.4T 12	/24DF		67					•	-	•	0	0	0	C1S7
				0-0		C2		1 1/4 ir		.4T 12	/24DF		67					•	•	•	•	•	•	C2S7
						C2		1 3/8 ir		21T 16		· \	/8					0	_	•	•		_	C2V8
						C2	:	1 3/4 ir	1 1	.3T 8/	16DP		Γ1					_	_	•	•		_	C2T1
				مه		C5		1 1/4 ir		.4T 12			67					•	-	•	0	0	0	C5S7
	127-4	(C)		"		C4		1 1/4 ir		.4T 12			67					•	-	•	•	0	•	C4S7
						C4		1 3/8 ir		21T 16			/8					•	•	-	-	-	-	C4V8
	152-4	(D)		H		D4	:	1 3/4 ir	1 1	.3T 8/	16DP		Γ1					-	-	•	•	•	•	D4T1
	165-4	(E)		X		E4	_	1 3/4 ir	n 1	.3T 8/	16DP	1	Γ1					-	-	-	•	•	-	E4T1
							:	2 in	1	.5T 8/	16DP		Γ2					-	-	_	_	•	•	E4T2

4) Only possible without attachment filter.

= Available

- = Not available

o = On request

⁵⁾ Specifications for version with integrated boost pump, please contact us for version without boost pump

⁼ Preferred program

⁶⁾ Hub for splined shaft according to ANSI B92.1a-1976 (drive shaft allocation according to SAE J744)

⁷⁾ Mounting hole pattern viewed on through drive

01	02	03	04	05	06	07	08	09		10	11	12	13	14	15	16	17	18	19	20	21	22		23
A4V	G		<u> </u>	T	7	T	1	<u> </u>	7	40	М		N	T	Ī	T	<u> </u>		A	T	T 0	T	—	
High-p		ro rol	l lief v	alve					,	1					<u> </u>			<u> </u>		<u> </u>	1 -			ļ
					alve, c	direct of	operat	ed, fix	ed se	tting,	with l	ow-pre	essur	e relie	f valve	e, fixed	d setti	ng						Α
Filtrat				-		-						<u> </u>												
							ion line																	S
	Filtrat	tion in	the	boos	t pum	p pres	sure li	ne																_
	Por	ts for	exte	rnal b	oost c	ircuit	filtrati	on (F e	and F	- _a)													l	D
	Atta	chme	nt fil	ter w	ith col	d star	t valve	8)										,						F
	Atta	chme	nt fil	ter ⁸⁾	with c	old sta	ırt valv	e and	elect	ric cor	ntamii	nation	indic	ator -	DEU	TSCH	conne	ctor						В
	Exteri	nal bo	ost p	oressi	ure su	pply (d	n vers	ion w	ithout	integ	rated	boost	pum	p)										E
Press	ure se	nsor																110	125	145	175	210	280	
21	Witho	ut pre	uzze	re ser	nsor													•	•	•	•	•	•	0
	High-pressure at measuring port M_A and $M_B^{(9)}$ er sensors															0	4							
Other	Without sensor																							
22																0								
	Speed	d sens	or D	SM, [OSA ¹⁰⁾																	-	[V
Stand	ard / s	specia	al ve	rsion																				
23	23 Standard version															0								
	Standard version with installation variants, e.g. T ports against standard open or closed															Υ								
	Speci	al ver	sion						-															S
• =	Availa	able		0 =	On r	eques	st	- =	Not a	availa	ble] = F	refe	rred p	orogra	am						
	ote t						es on olease			ne rel	-													

evant technical data when placing your order.

⁸⁾ Only available for working ports located on left

⁹⁾ Specify type code of sensor acc. to data sheet (PR4 - 95156) separately and observe the requirements on the electronics

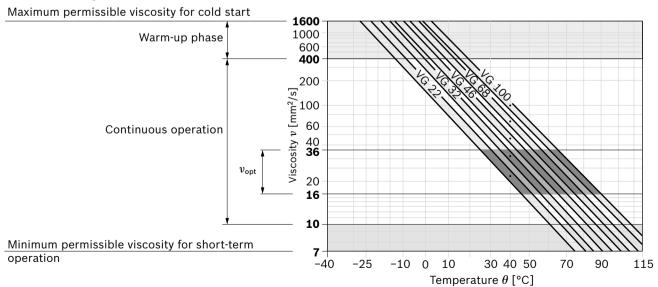
¹⁰⁾ Specify type code of sensor acc. to data sheet (DSM - 95132, DSA 95133) separately and observe the requirements on the electronics

Hydraulic fluid

The axial piston unit is designed for operation with HLP mineral oil according to DIN 51524.

Application instructions and requirements for hydraulic fluid selection, behavior during operation as well as disposal and environmental protection should be taken from the following data sheets before the start of project planning:

- ▶ 90220: Hydraulic fluids based on mineral oils and related hydrocarbons
- ▶ 90221: Environmentally acceptable hydraulic fluids
- ► 90222: Fire-resistant, water-free hydraulic fluids (HFDR/HFDU)
- ▶ 90225: Limited technical data for operation with waterfree and water-containing fire-resistant hydraulic fluids
- ► (HFDR, HFDU, HFAE, HFAS, HFB, HFC)


Notes on selection of hydraulic fluid

The hydraulic fluid should be selected so that the operating viscosity in the operating temperature range is within the optimum range (vopt see selection diagram).

Viscosity and temperature of hydraulic fluids

	Viscosity	Shaft seal	Temperature ³⁾	Comment
Cold start	$v_{\text{max}} \le 1600 \text{ mm}^2/\text{s}$	NBR ²⁾	θ _{St} ≥ -40 °C	$t \le 3$ min, without load ($p \le 50$ bar), $n \le 1000$ rpm
		FKM	θ _{St} ≥ -25 °C	Permissible temperature difference between axial piston unit and hydraulic fluid in the system maximum 25 K
Warm-up phase	$v = 1600 \dots 400 \text{ mm}^2/\text{s}$			$t \le 15 \text{ min, } p \le 0.7 \times p_{\text{nom}} \text{ and } n \le 0.5 \times n_{\text{nom}}$
Continuous	$v = 400 \dots 10 \text{ mm}^2/\text{s}^{1)}$	NBR ²⁾	θ ≤ +85 °C	measured at port T
operation		FKM	θ ≤ +110 °C	
	$v_{\rm opt}$ = 36 16 mm ² /s			Range of optimum operating viscosity and efficiency
Short-term	$v_{min} = 10 7 \text{ mm}^2/\text{s}$	NBR ²⁾	θ ≤ +85 °C	$t \le 3 \text{ min}, p \le 0.3 \times p_{\text{nom}}$, measured at port T
operation		FKM	θ ≤ +110 °C	

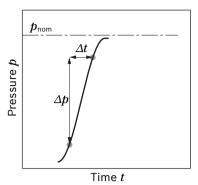
▼ Selection diagram

- $_{\mbox{\scriptsize 1)}}$ Corresponds e.g. for VG 46 to a temperature range of +4 °C to +85 °C (see selection diagram)
- 2) Special version, please contact us
- 3) If the temperature at extreme operating parameters cannot be adhered to, please contact us.

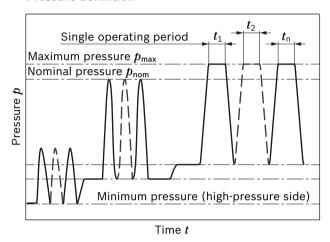
Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.

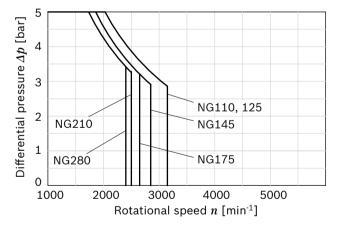

Depending on the system and the application, for the A4VG we recommend: Filter elements $\beta_{20} \ge 100$.

At very high hydraulic fluid temperatures (90 °C to maximum 110 °C, measured at port T), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.


Working pressure range

Pressure at working port A or B		Definition
Nominal pressure p_{nom}	450 bar	The nominal pressure corresponds to the maximum design pressure.
Maximum pressure p_{max}	500 bar	The maximum pressure corresponds to the maximum working pressure
Single operating period	10 s	within the single operating period. The sum of the single operating
Total operating period	300 h	periods must not exceed the total operating period.
Minimum pressure (high-pressure side)	25 bar	Minimum pressure at the high-pressure side (A or B) which is required to prevent damage to the axial piston unit.
Minimum pressure (low-pressure side)	10 bar above case pressure	Minimum pressure at the low-pressure side (A or B) which is required to prevent damage to the axial piston unit. Boost pressure setting must be higher depending on system.
Rate of pressure change $R_{\rm A\; max}$	9000 bar/s	Maximum permissible speed of pressure build-up and reduction during a pressure change across the entire pressure range.
Boost pump		
Nominal pressure $p_{\sf Sp\ nom}$	25 bar	
Maximum pressure $p_{\sf Sp\ max}$	40 bar	
Pressure at suction port S (inlet)		
Continuous p_{Smin}	≥0.8 bar absolute	$v \le 30 \text{ mm}^2/\text{s}$
Short-term, at a cold start	≥0.5 bar absolute	t < 3 min
Maximum pressure p_{Smax}	≤5 bar absolute	
Control pressure		
Required control pressure $p_{\text{St min}}$ at $n = 2000 \text{ rpm}$		Required control pressure $p_{\rm St}$ to ensure the function of the control. The required control pressure is depending on the rotational speed
Controls HP, HW, EP	20 bar above case pressure	and working pressure.
Controls HT, DA, EV, EZ, ET	25 bar above case pressure	-
Case pressure at port T		
Maximum differential pressure $\Delta p_{\text{T max}}$	See the diagram	Permissible differential pressure at the shaft seal (case to ambient pressure)
Pressure peak $p_{\rm T~peak}$	10 bar	t < 0.1 s

▼ Rate of pressure change $R_{\text{A max}}$



▼ Pressure definition

Total operating period = $t_1 + t_2 + ... + t_n$

▼ Maximum differential pressure at the shaft seal

Notice

- Working pressure range valid when using hydraulic fluids based on mineral oils. Please contact us for values for other hydraulic fluids.
- ► In addition to the hydraulic fluid and the temperature, the service life of the shaft seal is influenced by the rotational speed of the axial piston unit and the case pressure.
- ► The service life of the shaft seal decreases with increasing frequency of pressure peaks and increasing mean differential pressure.
- ► The case pressure must be greater than the ambient pressure.

Technical data

Size			NG		110	125	145	175	210	280
Displaceme	ent, geometric, per i	revolution								
	variable pump (at	p = 20 bar)	$V_{g\;max}$	cm ³	110.4	125	145.3	175.4	210.6	280.3
	standard boost pu	mp (at p = 20 bar)	V_{gSp}	cm ³	24.5	31	32	39	46	60
	large boost pump	(at p = 20 bar) ¹⁾	V_{gSp}	cm ³	31	-	39	47	60	-
Torque ²⁾	at $V_{ m gmax}$ and	Δp = 430 bar	T	Nm	756	856	994	1200	1441	1918
		Δp = 100 bar	T	Nm	176	200	231	279	335	446
Rotary stiff	ness of drive shaft	V8	c	kNm/rad	173	-	-	-	-	-
		T1	c	kNm/rad	214	193	248	266	-	-
		T2	c	kNm/rad	246	219	293	-	394	411
		T3	c	kNm/rad	-	-	340	374	483	510
		Z9	c	kNm/rad	219	-	-	-	-	-
		A1	c	kNm/rad	251	222	300	326	407	-
		A2	c	kNm/rad	-	-	326	357	-	-
		A3	c	kNm/rad	-	-	-	-	516	546
Moment of	inertia for rotary gr	oup	$J_{\sf TW}$	kgm²	0.0218	0.0232	0.0330	0.0570	0.0632	0.0975
Maximum a	ingular acceleration	α	rad/s²	14500	13000	12000	10000	8000	5000	
Case volum	ie	V	1	2.5	2.3	3.3	3.1	4.9	5.4	
Weight (wi	thout through drive	approx.	m	kg	88	84	106	115	152	160
Standard r	otary group					,		'		
Rotational	maximum at V_{gmax}	1	$n_{nom\;S}$	rpm	3150	3000	2850	2650	2500	2400
speed ⁴⁾	at $\Delta p \ge 40$ bar $(t <$	15 s)	n _{max 40}	rpm	3350	3150	3000	2800	2650	2550
	minimum		n_{min}	rpm	500	500	500	500	500	500
Flow	at n_{nom} and V_{gmax}		q_{v}	l/min	348	375	414	465	527	673
Power ²⁾	at n_{nom} , V_{gmax} and	Δp = 430 bar	P	kW	249	269	297	333	377	482
High-speed	rotary group									
Rotational	maximum at V_{gmax}		$n_{nom\;H}$	rpm	3400	-	3050	3000	-	-
speed ⁴⁾	at $\Delta p \ge 40$ bar ($t <$	at $\Delta p \ge 40$ bar $(t < 15 \text{ s})$			3600	-	3200	3100	-	-
	minimum			rpm	500	-	500	500	-	-
Flow	at n_{nom} and V_{gmax}		q_{v}	l/min	375	-	443	526	-	-
Power ²⁾	at n_{nom} , $V_{g\;max}$ and	Δp = 430 bar	P	kW	269	-	318	377	-	-

Notice

- ► Theoretical values, without efficiency and tolerances; values rounded
- ▶ Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Bosch Rexroth recommend testing the loads by means of experiment or calculation/simulation and comparison with the permissible values.
- 1) The version with a large internal gear pump can result in maximum rotational speed limitations. Please contact us.
- 2) Without boost pump
- 3) The data are valid for values between the minimum required and maximum permissible rotational speed.
 Valid for external excitation (e.g. diesel engine 2 to 8 times rotary

frequency, cardan shaft twice the rotary frequency).

The limit value is only valid for a single pump.

The load capacity of the connecting parts must be considered.

- 4) The values are applicable:
 - for the optimum viscosity range from $n_{\rm opt}$ = 36 to 16 mm²/s
 - for hydraulic fluid based on mineral oils (for HF hydraulic fluids, observe the technical data in 90225)

Permissible radial and axial forces of the drive shafts

▼ Splined shaft ANSI B92.1a

Size		NG		110	110	110	125	125	145	145
Drive shaft		,	in	1 3/8	1 3/4	2	1 3/4	2	1 3/4	2
Maximum radial	$ F_{\alpha} $	$F_{q\;max}$	N	9524	7483	6548	6500	5800	9241	8086
force at distance a (from shaft collar)	a	a	mm	24	33.5	40	33.5	40	33.5	40
Maximum axial	F _{ax} ± ==	+ F _{ax max}	N	6305	6305	6305	6411	6411	6763	6763
force	Tax	- F _{ax max}	N	4095	4095	4095	3989	3989	4437	4437

Size		NG		145	175	175	210	210	280	280
Drive shaft			in	2 1/4	1 3/4	2 1/4	2	2 1/4	2	2 1/4
Maximum radial	F _a	$F_{q\;max}$	N	8086	4800	4400	11185	10059	14562	13256
force at distance a (from shaft collar)	a	a	mm	40	33.5	40	40	40	40	40
Maximum axial	F +	+ F _{ax max}	N	6763	7252	7252	7760	7760	8450	8450
force	Tax	- F _{ax max}	N	4437	4748	4748	5040	5040	5150	5150

▼ Splined shaft DIN 5480

Size		NG		110	110	125	145	145	175	175
Drive shaft				W40	W45	W45	W45	W50	W45	W50
Maximum radial	_Fq ⊢	$F_{\sf q\; max}$	N	11000	10500	7200	9000	8500	5500	5000
force at distance a (from shaft collar)	a	a	mm	22.5	25	25	25	27.5	25	27.5
Maximum axial	F +	+ F _{ax max}	N	6305	6305	6411	6763	6763	7252	7252
force	T ax ± ← □	- F _{ax max}	N	4095	4095	3989	4437	4437	4748	4748

Size		NG		210	210	280
Drive shaft				W45	W55	W55
Maximum radial	Fq	$F_{q\;max}$	N	13500	12500	14500
force at distance a (from shaft collar)	a	a	mm	25	29	29
Maximum axial	F +(f)	+ F _{ax max}	N	7760	7760	8450
force	P ax ± ← + + + + + + + + + + + + + + + + + +	- F _{ax max}	N	5040	5040	5150

Determining	the ope	rati	ng characteristics		
Flow	$q_{\sf v}$	=	$\frac{V_{g} \times n \times \eta_{v}}{1000}$		[I/min]
Torque	T	=	$\frac{V_{g} \times \Delta p}{20 \times \pi \times \eta_{hm}}$		[Nm]
Power	P	=		$\frac{q_{v} \times \Delta p}{600 \times \eta_{t}}$	[kW]

Key

 $V_{
m g}$ Displacement per revolution [cm 3]

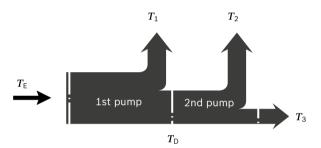
 Δp Differential pressure [bar]

n Rotational speed [rpm]

 η_{v} Volumetric efficiency

 $\eta_{
m hm}$ Hydraulic-mechanical efficiency

 $\eta_{\rm t}$ Total efficiency ($\eta_{\rm t}$ = $\eta_{\rm v}$ × $\eta_{\rm hm}$)


Notice

- ► The axial and radial forces generally influence the service life of the bearings.
- ► Special requirements apply in the case of belt drive and cardan shaft. Please contact us.

Permissible input and through-drive torques

Size			NG		110	125	145	175	210	280
Torque at $V_{\rm g max}$ and Δp = 430 bar ¹⁾		Nm	756	856	994	1200	1441	1918		
Maximum input torque at drive	shaft²)								
ANSI B92.1a-1976	V8	1 3/8 in	$T_{E\;max}$	Nm	970	-	-	-	-	-
	T1	1 3/4 in	$T_{E\;max}$	Nm	1640	1640	1640	1640	-	-
	T2	2 in	$T_{E\;max}$	Nm	2670	2670	2670	_	2670	2670
	Т3	2 1/4 in	$T_{E\;max}$	Nm	-	-	4070	4070	4070	4070
DIN 5480	Z9	W40	$T_{E\;max}$	Nm	On	-	-	-	-	-
					request					
	A1	W45	$T_{E\;max}$	Nm	2190	2190	2190	2190	2190	-
	A2	W50	$T_{E\;max}$	Nm	-	_	3140	3140	-	-
	А3	W55	$T_{E\;max}$	Nm	-	-	-	_	4350	4350
Maximum through-drive torque			T _{D max}	Nm	934	1110	1110	1760	2641	2641

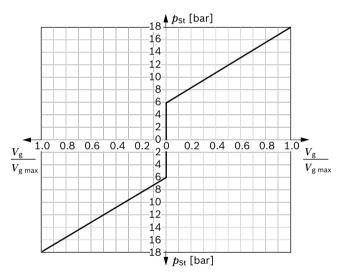
▼ Distribution of torques

Torque at 1st pump	T_1		
Torque at 2nd pump	T_2		
Torque at 3rd pump	T_3		
Input torque	T_E	=	$T_1 + T_2 + T_3$
	T_E	<	T_{Emax}
Through-drive torque	T_D	=	$T_2 + T_3$
	T_D	<	T_{Dmax}

¹⁾ Efficiency not considered

²⁾ For drive shafts free of radial force

HP - Proportional control, hydraulic, pilot-pressure related

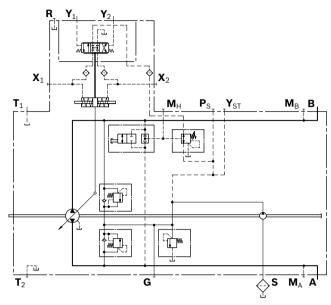

The output flow of the pump is infinitely variable between 0 and 100%, proportional to the difference in pilot pressure applied to the two pilot pressure ports $(Y_1 \text{ and } Y_2)$.

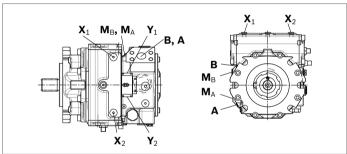
The pilot signal, coming from an external source, is a pressure signal. Flow is negligible, as the pilot signal acts only on the control spool of the control valve.

This control spool then directs control oil into and out of the stroking cylinder to adjust pump displacement as required.

A feedback lever connected to the stroking piston maintains the pump flow for any given pilot signal within the control range.

If the pump is also equipped with a DA control valve (see page 16), automotive operation is possible for travel drives.

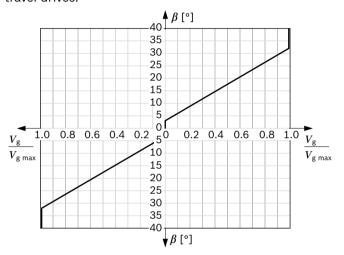



- $ightharpoonup V_{
 m g}$ = Displacement at $p_{
 m St}$ $V_{
 m g \ max}$ = Displacement at $p_{
 m St}$ = 18 bar
- ▶ Pilot signal p_{St} = 6 to 18 bar (at port \mathbf{Y}_1 , \mathbf{Y}_2)
- Start of control at 6 bar
- ▶ End of control at 18 bar (maximum displacement $V_{g \text{ max}}$)

Notice

In the neutral position, the HP control module must be vented to reservoir via the external pilot control device.

Standard version


Correlation of direction of rotation, control and flow direction					
Direction of rotation	clockwise counter- clockwise				
Pilot signal	Y ₁	Y ₂	Y ₁	Y ₂	
Control pressure	X ₁	X ₂	X ₁	X ₂	
Flow direction	B to A	A to B	A to B	B to A	
Working pressure	M _A	M _B	M _B	M _A	

HW - Proportional control, hydraulic, mechanical servo

The output flow of the pump is infinitely variable between 0 and 100%, proportional to the swivel angle of the control lever.

A feedback lever connected to the stroking piston maintains the pump flow for any given position of the control lever.

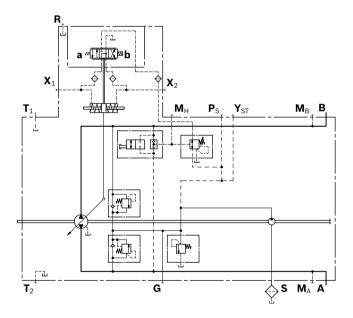
If the pump is also equipped with a DA control valve (see page 16), automotive operation is possible for travel drives.

Swivel angle ${\pmb \beta}$ at the control lever for pump displacement change:

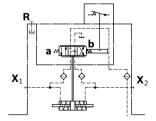
- Start of control at β = ±3°
- ▶ End of control at β (maximum displacement $V_{\rm g\,max}$) at ±32°
- ▶ Rotational limit β of the control lever (internal) ±38° The maximum required torque at the lever is 170 Ncm. To prevent damage to the HW control module, a positive mechanical stop of 36.5°±1 must be provided for the HW control lever on the customer side.

Notice

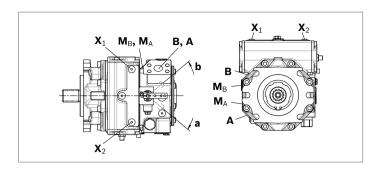
- Spring centering enables the pump, depending on pressure and speed, to move automatically to the neutral position (V_g = 0) as soon as there is no longer any torque on the control lever of the HW control module.
- ► If necessary, the position of the lever can be changed.


 The procedure is defined in the instruction manual.
- ► On delivery, the position of the lever may differ from that shown in the drawing.

Option: Neutral position switch


The switch contact in the neutral position switch is closed when the control lever on the HW control module is in its neutral position. The switch opens when the control lever is moved out of the central position in either direction. Thus, the neutral position switch provides a monitoring function for drive units that require the pump to be in the neutral position during certain operating conditions (e.g. starting diesel engines).

Technical data	
Load capacity	20 A (continuous), without switching operations
Switching capacity	15 A / 32 V (resistive load)
	4 A / 32 V (inductive load)
Connector version	DEUTSCH DT04-2P-EP04
	(mating connector, see page 65)


▼ Standard version

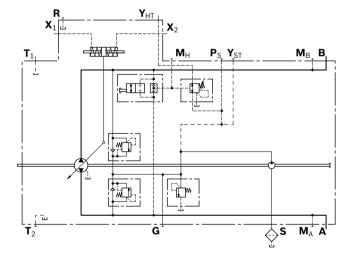
▼ Version with neutral position switch

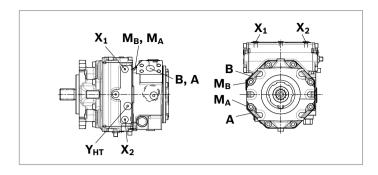
14 **A4VG Series 40** | Axial piston variable pump HW – Proportional control, hydraulic, mechanical servo

Correlation of direction of rotation, control and flow direction				
Direction of rotation	clockwise		counter- clockwise	
Lever direction	а	b	a	b
Control pressure	X_1	\mathbf{X}_2	X ₁	\mathbf{X}_2
Flow direction	B to A	A to B	A to B	B to A
Working pressure	M _A	M_{B}	M _B	M _A

HT - Hydraulic control, direct operated

With the direct operated hydraulic control, the output flow of the pump is controlled by a hydraulic control pressure, applied directly to the stroking piston through either port \mathbf{X}_1 or \mathbf{X}_2 .


Flow direction is determined by which control pressure port is pressurized (refer to table below).


Pump displacement is infinitely variable and proportional to the applied control pressure, but is also influenced by system pressure and pump drive speed.

In order to use the optional built-in pressure cut-off, port \mathbf{Y}_{HT} must be used as the control pressure source for the selected control module. See page 56 for a functional description of the pressure cut-off.

Maximum permissible control pressure: 40 bar Use of the HT control requires a review of the engine and vehicle parameters to ensure that the pump is set up correctly. We recommend that all HT applications be reviewed by a Bosch Rexroth application engineer.

If the pump is also equipped with a DA control valve (see page 16), automotive operation is possible for travel drives.

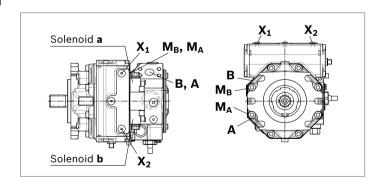
Correlation of direction of rotation, control and flow direction					
Direction of rotation	clockwise counter-clockwise				
Control pressure	X ₁	X ₂	X ₁	X ₂	
Flow direction	B to A	A to B	A to B	B to A	
Working pressure	M _A	M _B	M _B	M _A	

DA - Automatic control, speed related

The DA closed loop control is an engine speed-dependent system for travel drives. The built-in DA control valve generates a pilot pressure that is proportional to pump (engine) drive speed. This pilot pressure is directed to the stroking cylinder of the pump by an electromagnetically actuated 4/3-way directional valve. The pump displacement is infinitely variable in each flow direction and is influenced by both pump drive speed and system pressure. The flow direction (e.g. machine moving forward or backward) is determined by either solenoid **a** or **b** being activated. Increasing the pump drive speed generates a higher pilot pressure from the DA control valve, with a subsequent increase in pump flow.

Depending on the selected pump operating characteristics, increasing system pressure (e.g. machine load) causes the pump to swivel back towards a smaller displacement. An overload protection for the engine (against stalling) is achieved by combining this pressure-dependent reduction in pump stroke with a reduction in pilot pressure as the engine speed drops.

Any additional power requirement, e.g. for hydraulic functions from attachments, could cause the engine speed to drop further. This will cause a further reduction in pilot pressure and thus of the pump displacement. Automatic power distribution and full exploitation of the available power are achieved in this way, both for the travel drive and for the implement hydraulics, with priority given to the implement hydraulics.

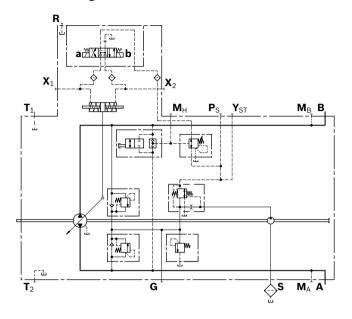

Various override options are available for DA control function to allow controlled operation of the implement hydraulics with high rpm at reduced travel speed.

The DA control valve can also be used in pumps with HP, HW, HT, DA and EP control modules to protect the combustion engine against overload.

Notice

- Our Sales department will provide you detailed information. Use our computer program to work out the input design that meets your needs. All DA applications must be approved by a Bosch Rexroth application engineer.
- ▶ DA closed loop control is only suitable for certain types of travel drive systems and requires review of the engine and vehicle parameters to ensure that the pump is used correctly and that machine operation is safe and efficient. We recommend that all DA applications be reviewed by a Bosch Rexroth application engineer.

Technical data, solenoid	DA1	DA2		
Voltage	12 V (±20%)	24 V (±20%)		
Neutral position $V_g = 0$	de-energized	de-energized		
Position $V_{\rm g\ max}$	Current switched on	Current switched on		
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω		
Nominal power	26.2 W	26.5 W		
Minimum active current required	1.32 A	0.67 A		
Duty cycle	100%	100%		
Type of protection: see connector version page 65				



Correlation of direction of rotation, control and flow direction				
Direction of rotation	clockwise counter-clockwise			
Actuation of solenoid	а	a b		b
Control pressure	X ₂	X ₁	X ₂	X ₁
Flow direction	A to B	B to A	B to A	A to B
Working pressure	M _B	M _A	M _A	M _B

DA..1 - DA control valve, fixed setting

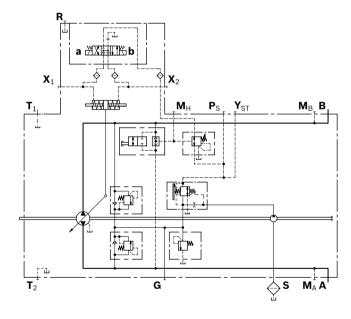
Pilot pressure is generated in relation to drive speed.

▼ Circuit diagram

DA..2, DA..3 - DA control valve, mechanically adjustable with position lever

Pilot pressure is generated in relation to drive speed. Any reduction of pilot pressure possible, independently of drive speed, through mechanical actuation of the position lever (inch function).

The maximum permissible actuation torque at the position lever is T_{max} = 4 Nm.


Maximum angle of rotation 70°, lever position: any.

DA..2

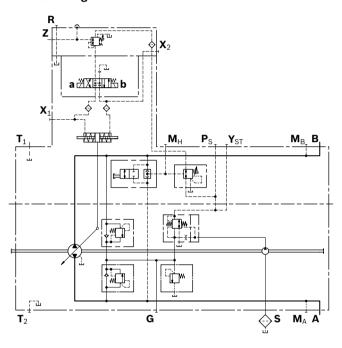
Direction of actuation of the position lever: clockwise

DA..3

Direction of actuation of the position lever: counter-clockwise

DA..5 - DA control valve, fixed setting and brake inch valve mounted

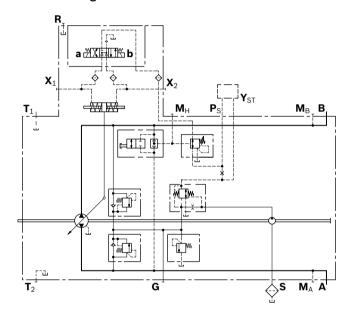
Only for pumps with DA control module.


Version with pressure reducing valve.

Permits reduction of the pilot pressure, independently of the drive speed via hydraulic control (port **Z**).

Control at port **Z** by means of brake fluid based on mineral oil

Maximum permissible pilot pressure at port **Z**: 80 bar

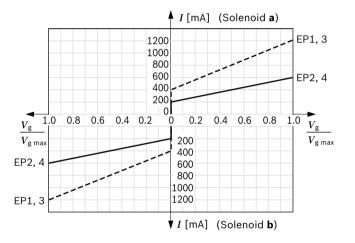

▼ Circuit diagram

DA..6 - DA control valve, fixed setting, ports for pilot control device as inch valve

Any reduction of the pilot pressure possible, independent of the drive speed is achieved by the mechanical actuation of the pilot control device.

The pilot control device is installed separately from the pump (for example in the driver's cabin) and connected to the pump by two hydraulic control lines via ports \mathbf{P}_{S} and \mathbf{Y}_{ST} . A suitable pilot control device must be ordered separately and is not included in the scope of delivery.

EP - Proportional control, electric

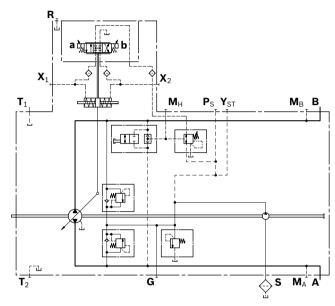

The output flow of the pump is infinitely variable between 0 and 100%, proportional to the electrical current supplied to solenoid **a** or **b**.

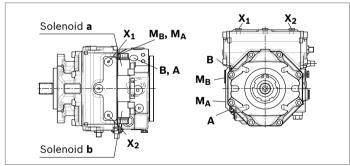
The electrical energy is converted into a force acting on the control spool.

This control spool then directs control oil into and out of the stroking cylinder to adjust pump displacement as required.

A feedback lever connected to the stroking piston maintains the pump flow for any given current within the control range.

If the pump is also equipped with a DA control valve (see page 16), automotive operation is possible for travel drives.


Notice


The proportional solenoids in version EP1/EP2 do not have manual override. Proportional solenoids with manual override and spring return are available on request (version EP3/EP4).

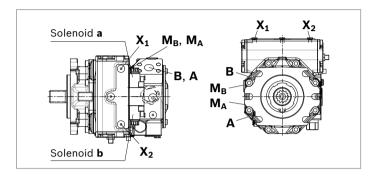
Technical data, solenoid	EP1, 3	EP2, 4		
Voltage	12 V (±20%)	24 V (±20%)		
Control current				
Start of control at $V_g = 0$	400 mA	200 mA		
End of control at $V_{\rm g\ max}$	1200 mA	600 mA		
Current limit	1.54 A	0.77 A		
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω		
Dither				
Frequency	100 Hz	100 Hz		
minimum oscillation range ¹⁾	240 mA	120 mA		
Duty cycle	100%	100%		
Type of protection: see connector version page 65				

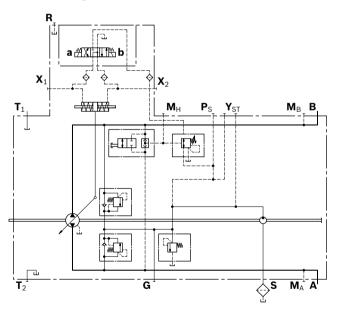
Various BODAS controllers with application software and amplifiers are available for controlling the proportional solenoids.

Further information can also be found on the Internet at www.boschrexroth.com/mobile-electronics

Correlation of direction of rotation, control and flow direction				
Direction of rotation	clockwise	,	counter-o	lockwise
Actuation of sole- noid	а	b	a	b
Control pressure	X ₁	X ₂	X ₁	X ₂
Flow direction	B to A	A to B	A to B	B to A
Working pressure	M _A	M _B	M _B	M _A

¹⁾ Minimum required oscillation range of the control current $\Delta I_{\rm p-p}$ (peak to peak) within the respective control range (start of control to end of control)


EZ - Two-point control, electric


By actuating either switching solenoid **a** or **b**, internal control pressure is applied directly to the stroking piston and the pump swivels to maximum displacement. The EZ control enables pump flow to be switched between $V_{\rm g}$ = 0 and $V_{\rm g \, max}$.

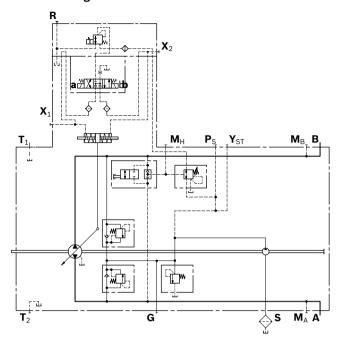
Flow direction is determined by which solenoid is energized.

Technical data, solenoid	EZ1	EZ2		
Voltage	12 V (±20%)	24 V (±20%)		
Neutral position $V_{\rm g}$ = 0	de-energized	de-energized		
Position $V_{g\;max}$	Current switched on	Current switched on		
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω		
Nominal power	26.2 W	26.5 W		
Minimum active current required	1.32 A	0.67 A		
Duty cycle	100%	100%		
Type of protection: see connector version page 65				

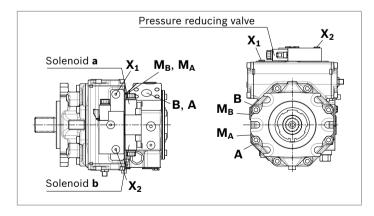
Correlation of direction of rotation, control and flow direction						
Direction of rotation	clockwise	е	counter-o	counter-clockwise		
Actuation of solenoid	a b		а	b		
Control pressure	\mathbf{X}_2	\mathbf{X}_1	\mathbf{X}_2	\mathbf{X}_1		
Flow direction	A to B	B to A	B to A	A to B		
Working pressure	M _B	M _A	M _A	M _B		

EV - Electric control, direct operated

With the direct operated electric control (EV), the output flow of the pump is infinitely variable between 0 and 100%, controlled by the control pressure of the pressure reducing valve. This control pressure level is proportional to the electric current, applied to the solenoid of the pressure reducing valve. This control pressure is then connected directly to the stroking cylinder of the pump by energizing either switching solenoid **a** or **b** on the EV control module, which determines the direction of the pump flow.


The resulting pump displacement at a certain control pressure is also influenced by pump drive speed and working pressure.

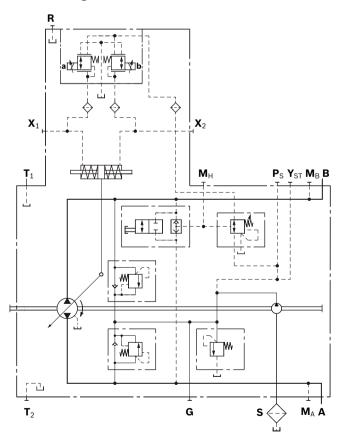
Technical data, pressure reducing valve	EV1	EV2		
Voltage	12 V	24 V		
Current limit	1.54 A	0.77 A		
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω		
Dither				
Frequency	100 Hz	100 Hz		
minimum oscillation range ¹⁾	240 mA	120 mA		
Duty cycle	100%	100%		
Type of protection: see connector version page 65				


Various BODAS controllers with application software and amplifiers are available for controlling the proportional solenoids.

Further information can also be found on the Internet at www.boschrexroth.com/mobile-electronics

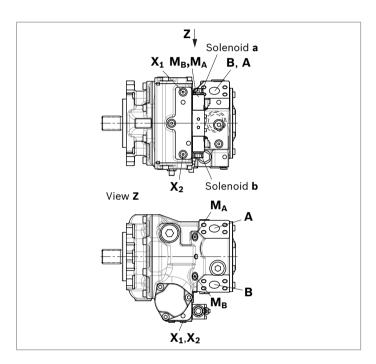
Technical data, solenoid	EV1	EV2			
Voltage	12 V (±20%)	24 V (±20%)			
Neutral position $V_g = 0$	de-energized	de-energized			
Position $V_{\rm g\ max}$	Current switched on	Current switched on			
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω			
Nominal power	26.2 W	26.5 W			
Minimum active current required	1.32 A	0.67 A			
Duty cycle	100%	100%			
Type of protection: see connector version page 65					

Correlation of direction of rotation, control and flow direction					
Direction of rotation	clockwise		counter-c	lockwise	
Actuation of sole- noid	а	b	a	b	
Control pressure	X ₂	X ₁	X ₂	X ₁	
Flow direction	A to B	B to A	B to A	A to B	
Working pressure	M _B	M _A	M _A	M _B	



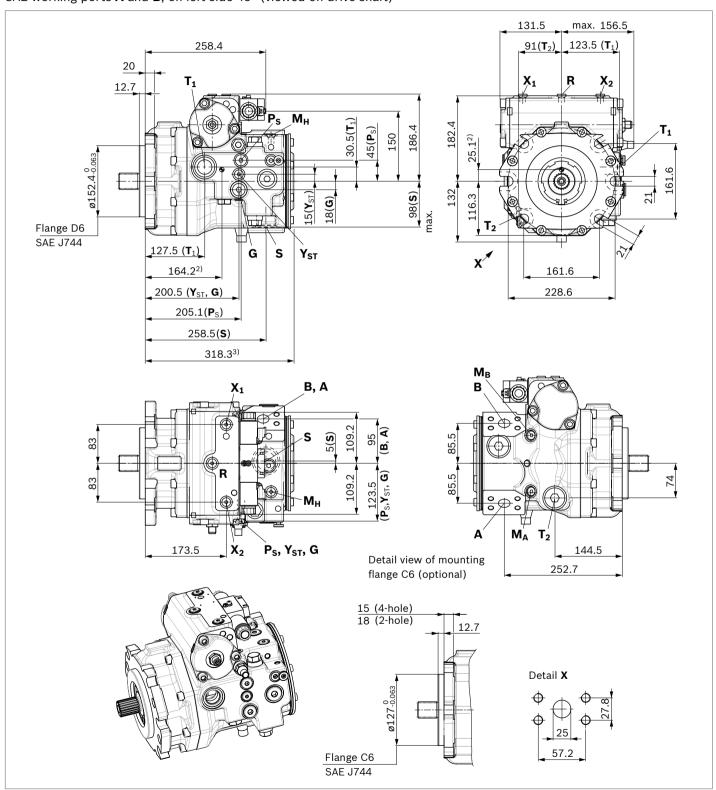
¹⁾ Minimum required oscillation range of the control current $\Delta I_{\text{p-p}}$ (peak to peak) within the respective control range (start of control to end of control)

ET - Electric control, direct operated


The output flow of the pump is infinitely variable between 0 and 100%. Depending on the preselected current I at solenoids $\bf a$ and $\bf b$ of the pressure reducing valves, the stroking cylinder of the pump is proportionally supplied with control pressure. The pump displacement that arises at a certain control current is dependent on the speed and working pressure of the pump. A different flow direction is associated with each pressure reducing valve. Maximum permissible control pressure: 40 bar.

Technical data, solenoid	ET5	ET6		
Voltage	12 V (±20%)	24 V (±20%)		
Current limit	1.54 A	0.77 A		
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω		
Dither				
Frequency	100 Hz	100 Hz		
minimum oscillation range ¹⁾	240 mA	120 mA		
Duty cycle 100% 100%				
Type of protection: see connector version page 65				

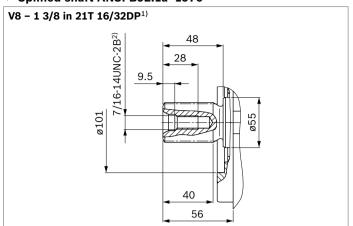
¹⁾ Minimum required oscillation range of the control current $\Delta I_{\text{p-p}}$ (peak to peak) within the respective control range (start of control to end of control)


Correlation of direction of rotation, control and flow direction						
Direction of rotation	clockwise	9	counter-c	lockwise		
Actuation of sole- noid	а	b	а	b		
Control pressure	X_1	X ₂	X ₁	\mathbf{X}_2		
(in X_3 , X_4 optional)	X ₃	\mathbf{X}_4	X ₃	\mathbf{X}_4		
Flow direction	B to A	A to B	A to B	B to A		
Working pressure	M _A	M _B	M _B	M _A		

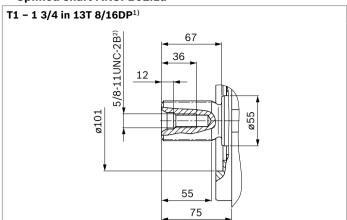
Dimensions, size 110

EP - Proportional control, electric

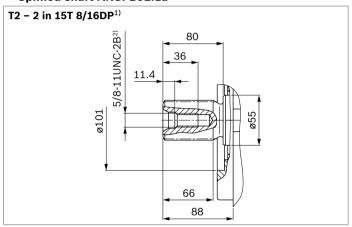
SAE working ports A and B, on left side 45° (viewed on drive shaft)1)

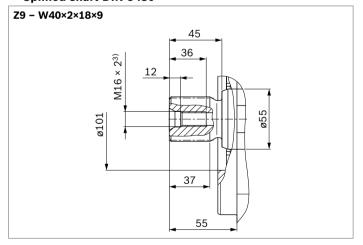


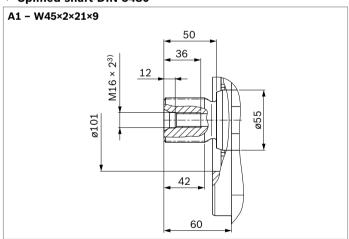
- $_{\rm 1)}$ For SAE working ports ${\bf A}$ and ${\bf B},$ $45^{\rm o}$ right (viewed on drive shaft), the complete case and thus the dimensions are mirrored.
- 2) Center of gravity


3) Valid for standard boost pump, overall length without boost pump and with large boost pump, see through drive, page 50

24


▼ Splined shaft ANSI B92.1a-1976


▼ Splined shaft ANSI B92.1a


▼ Splined shaft ANSI B92.1a

▼ Splined shaft DIN 5480

▼ Splined shaft DIN 5480

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

 $_{\rm 2)}\,$ Thread according to ASME B1.1

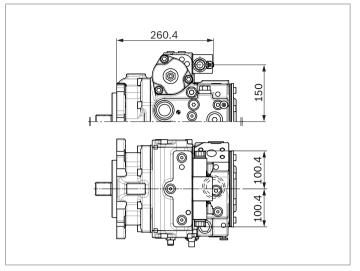
³⁾ Center bore according to DIN 332 (thread according to DIN 13)

Ports		Standard	Size	$p_{\sf max}$ [bar] $^{4)}$	State ¹⁰⁾
А, В	Working port Fastening thread	SAEJ518 ⁵⁾ DIN 13	1 in M12 × 1.75; 17 deep	500	0
S	Suction port	ISO 6149 ⁸⁾	M42 × 2; 19.5 deep	5	O ⁶⁾
T ₁	Drain port	ISO 6149 ⁸⁾	M33 × 2; 19 deep	3	O ⁷⁾
T ₂	Drain port	ISO 6149 ⁸⁾	M33 × 2; 19 deep	3	X ⁷⁾
R	Air bleed port	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	3	Х
X ₁ , X ₂	Control pressure port (upstream of orifice)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
X ₁ , X ₂	Control pressure port (upstream of orifice, HT only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
X ₃ , X ₄ ⁹)	Stroking chamber pressure port	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
G	Boost pressure port inlet	ISO 6149 ⁸⁾	M22 × 1.5; 15.5 deep	40	Х
Ps	Pilot pressure port inlet	ISO 6149 ⁸⁾	M18 × 1.5; 14.5 deep	40	Х
Ps	Pilot pressure port inlet (DA6 only)	ISO 6149 ⁸⁾	M18 × 1.5; 14.5 deep	40	0
Y _{ST}	Pilot pressure port outlet	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
Y _{ST}	Pilot pressure port outlet (DA6 only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
Y _{HT}	Pilot pressure port outlet	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
M _A , M _B	Measuring port pressure A, B	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	500	Х
M _H	Measuring port, high pressure	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	500	Х
Y ₁ , Y ₂	Pilot pressure port (pilot signal HP only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
Z	Pilot pressure port (inch signal DA5 only)	ISO 6149 ⁸⁾	M10 × 1; 8 deep	80	0

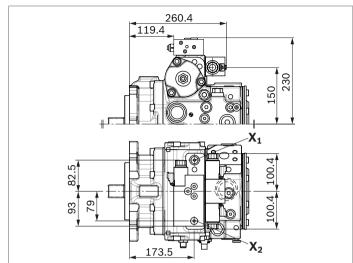
⁴⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

⁵⁾ Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard.

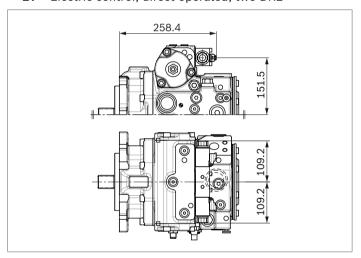
⁶⁾ Plugged for external boost pressure supply.


⁷⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 68).

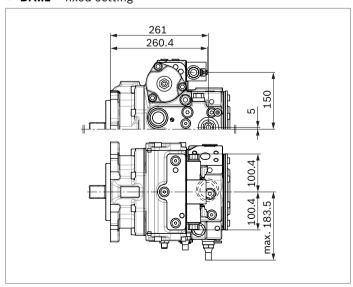
⁸⁾ The countersink can be deeper than as specified in the standard.


⁹⁾ Optional, see page 59

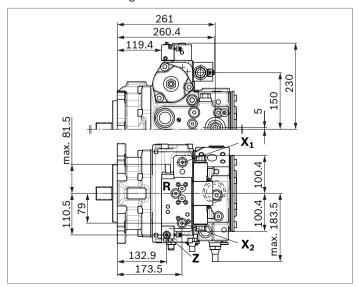
¹⁰⁾ O = Must be connected (plugged when delivered)
X = Plugged (in normal operation)


▼ EZ - Two-point control, electric

▼ **EV** – Electric control, direct operated, 4/3-way directional valve, one DRE

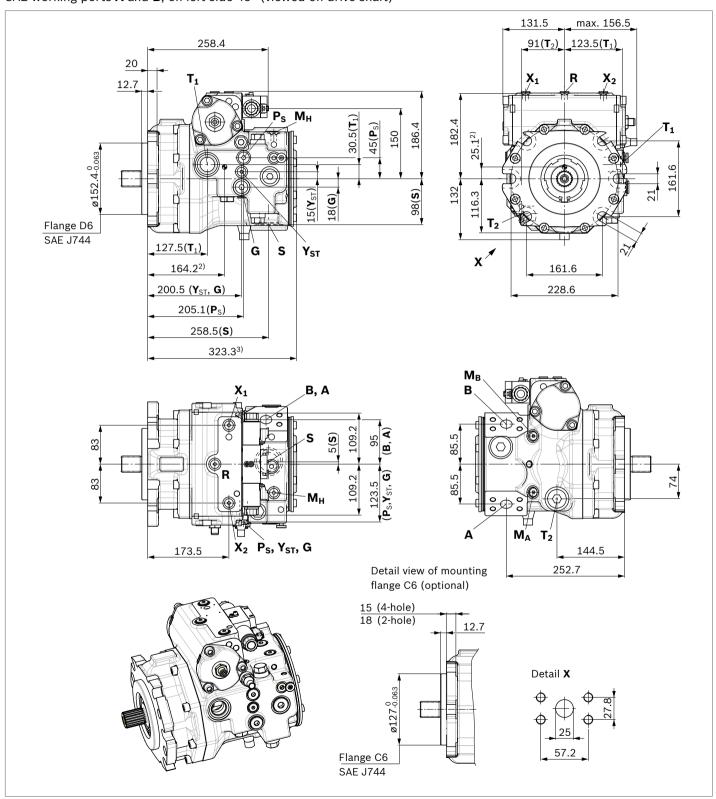


▼ ET - Electric control, direct operated, two DRE



DA control valve

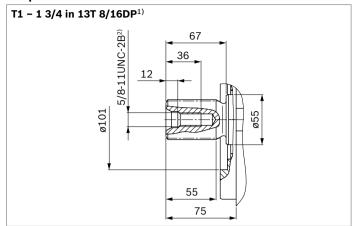
▼ DA..1 - fixed setting


▼ DA..5 - fixed setting and inch valve mounted

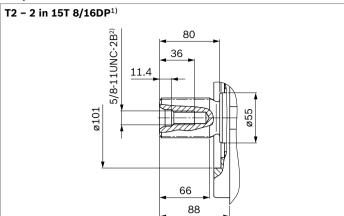
Dimensions, size 125

EP - Proportional control, electric

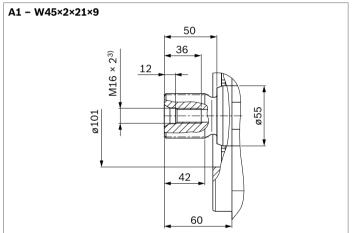
SAE working ports A and B, on left side 45° (viewed on drive shaft)1)



 $_{\rm 1)}$ For SAE working ports ${\bf A}$ and ${\bf B},\,45^{\rm o}$ right (viewed on drive shaft), the complete case and thus the dimensions are mirrored.


²⁾ Center of gravity

³⁾ Valid for standard boost pump, overall length without boost pump see through drive, page 50


▼ Splined shaft ANSI B92.1a

▼ Splined shaft ANSI B92.1a

▼ Splined shaft DIN 5480

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

 $_{\rm 2)}\,$ Thread according to ASME B1.1

³⁾ Center bore according to DIN 332 (thread according to DIN 13)

Ports		Standard	Size	$p_{\sf max}$ [bar] ⁴⁾	State ¹⁰⁾
A, B	Working port	SAEJ518 ⁵⁾	1 in	500	0
	Fastening thread	DIN 13	M12 × 1.75; 17 deep		
S	Suction port	ISO 61498)	M42 × 2; 19.5 deep	5	O ⁶⁾
T ₁	Drain port	ISO 61498)	M33 × 2; 19 deep	3	O ⁷⁾
T ₂	Drain port	ISO 6149 ⁸⁾	M33 × 2; 19 deep	3	X ⁷⁾
R	Air bleed port	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	3	Х
X ₁ , X ₂	Control pressure port (upstream of orifice)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
X ₁ , X ₂	Control pressure port (upstream of orifice, HT only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
X ₃ , X ₄ ⁹⁾	Stroking chamber pressure port	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
G	Boost pressure port inlet	ISO 6149 ⁸⁾	M22 × 1.5; 15.5 deep	40	Х
Ps	Pilot pressure port inlet	ISO 6149 ⁸⁾	M18 × 1.5; 14.5 deep	40	Х
Ps	Pilot pressure port inlet (DA6 only)	ISO 6149 ⁸⁾	M18 × 1.5; 14.5 deep	40	0
Y _{ST}	Pilot pressure port outlet	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
Y _{ST}	Pilot pressure port outlet (DA6 only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
Y _{HT}	Pilot pressure port outlet	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
M _A , M _B	Measuring port pressure A, B	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	500	Х
M _H	Measuring port, high pressure	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	500	Х
Y ₁ , Y ₂	Pilot pressure port (pilot signal HP only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
Z	Pilot pressure port (inch signal DA5 only)	ISO 6149 ⁸⁾	M10 × 1; 8 deep	80	0

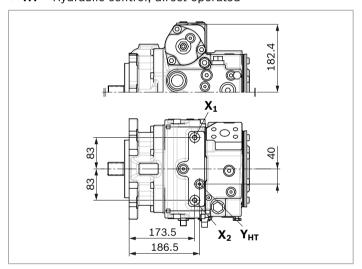
⁴⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

⁵⁾ Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard.

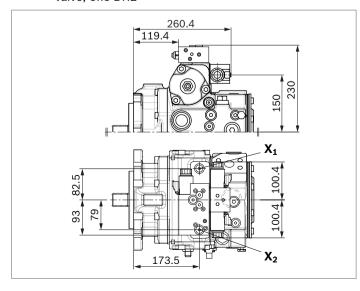
⁶⁾ Plugged for external boost pressure supply.

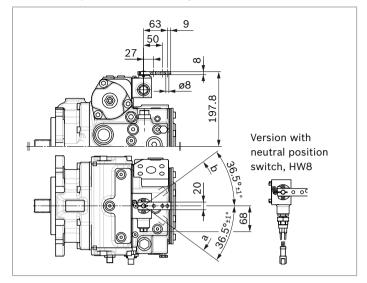
⁷⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 68).

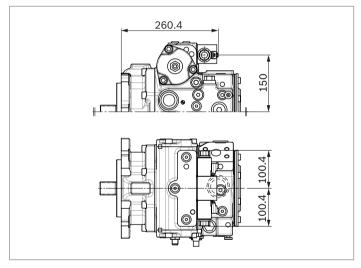
⁸⁾ The countersink can be deeper than as specified in the standard.

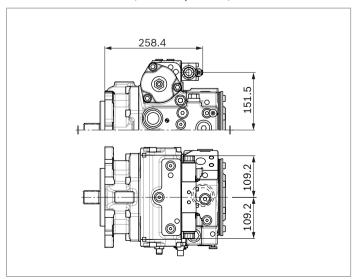

⁹⁾ Optional, see page 59

¹⁰⁾ O = Must be connected (plugged when delivered)
X = Plugged (in normal operation)

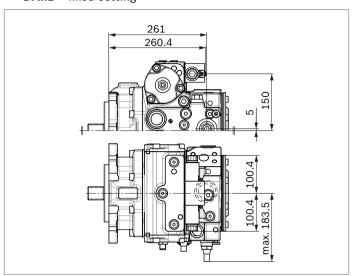

▼ **HP** – Proportional control, hydraulic, pilot-pressure related


▼ HT - Hydraulic control, direct operated


▼ EV - Electric control, direct operated, 4/3-way directional valve, one DRE

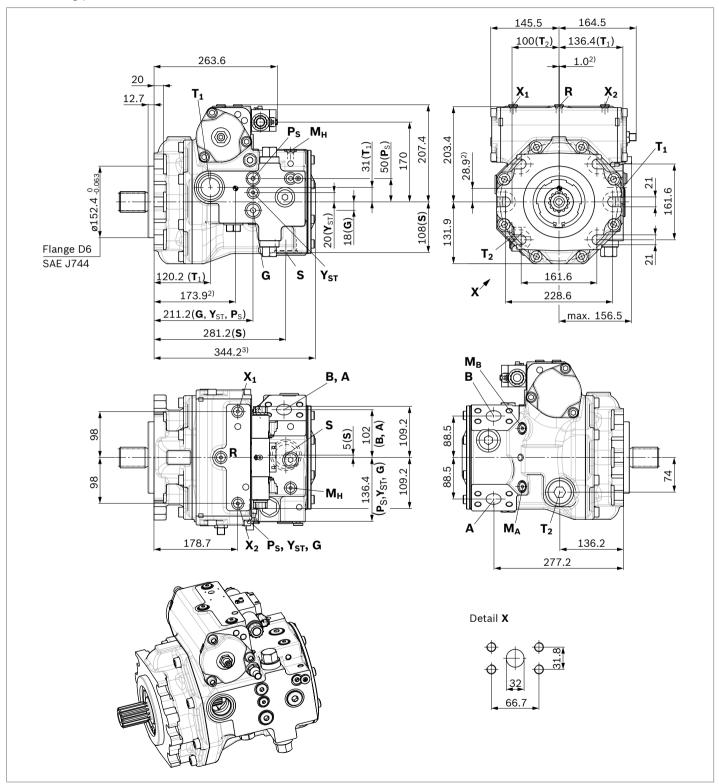

▼ HW - Proportional control, hydraulic, mechanical servo

▼ EZ - Two-point control, electric



▼ ET - Electric control, direct operated, two DRE

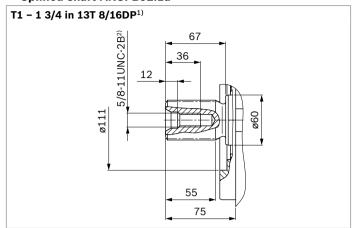
DA control valve


▼ DA..1 - fixed setting

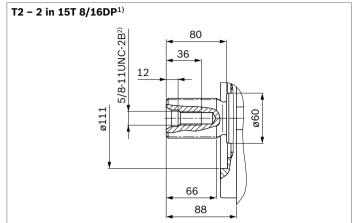
Dimensions, size 145

EP - Proportional control, electric

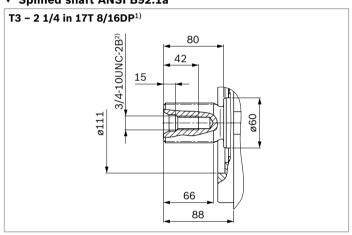
SAE working ports A and B, on left side 45° (viewed on drive shaft)1)

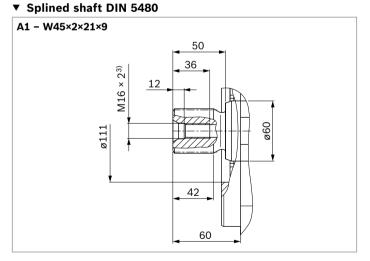


¹⁾ For SAE working ports **A** and **B**, 45° right (viewed on drive shaft), the complete case and thus the dimensions are mirrored.

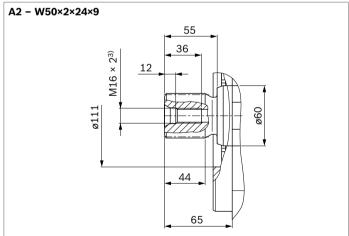

²⁾ Center of gravity

³⁾ Valid without boost pump and for standard boost pump, overall length with large boost pump, see through drive, page 50


▼ Splined shaft ANSI B92.1a



▼ Splined shaft ANSI B92.1a



▼ Splined shaft ANSI B92.1a

▼ Splined shaft DIN 5480

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

 $_{\rm 2)}\,$ Thread according to ASME B1.1

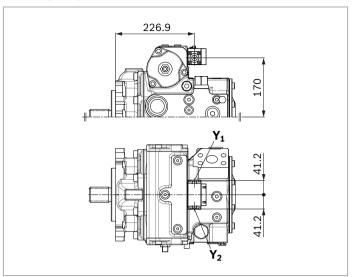
³⁾ Center bore according to DIN 332 (thread according to DIN 13)

Ports		Standard	Size	$p_{\sf max}$ [bar] $^{4)}$	State ¹⁰⁾
A, B	Working port	SAEJ518 ⁵⁾	1 1/4 in	500	0
	Fastening thread	DIN 13	M14 × 2; 19 deep		
S	Suction port	ISO 6149 ⁸⁾	M48 × 2; 22 deep	5	O ⁶⁾
T ₁	Drain port	ISO 6149 ⁸⁾	M42 × 2; 19.5 deep	3	O ⁷⁾
T ₂	Drain port	ISO 6149 ⁸⁾	M42 × 2; 19.5 deep	3	X ⁷⁾
R	Air bleed port	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	3	X
X ₁ , X ₂	Control pressure port (upstream of orifice)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
X ₁ , X ₂	Control pressure port (upstream of orifice, HT only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
X ₃ , X ₄ ⁹⁾	Stroking chamber pressure port	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
G	Boost pressure port inlet	ISO 6149 ⁸⁾	M22 × 1.5; 15.5 deep	40	Х
Ps	Pilot pressure port inlet	ISO 6149 ⁸⁾	M18 × 1.5; 14.5 deep	40	Х
Ps	Pilot pressure port inlet (DA6 only)	ISO 6149 ⁸⁾	M18 × 1.5; 14.5 deep	40	0
Y _{ST}	Pilot pressure port outlet	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
Y _{ST}	Pilot pressure port outlet (DA6 only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
Y _{HT}	Pilot pressure port outlet	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
M _A , M _B	Measuring port pressure A, B	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	500	Х
M _H	Measuring port, high pressure	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	500	Х
Y ₁ , Y ₂	Pilot pressure port (pilot signal HP only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
Z	Pilot pressure port (inch signal DA5 only)	ISO 6149 ⁸⁾	M10 × 1; 8 deep	80	0

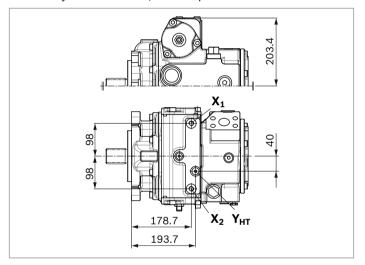
⁴⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

 $_{5)}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard.

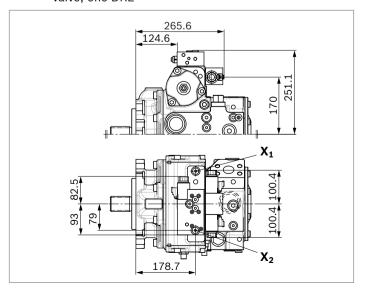
⁶⁾ Plugged for external boost pressure supply.

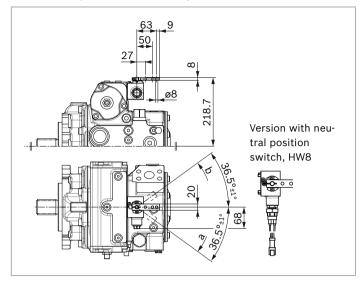

⁷⁾ Depending on installation position, **T**₁ or **T**₂ must be connected (see also installation instructions on page 68).

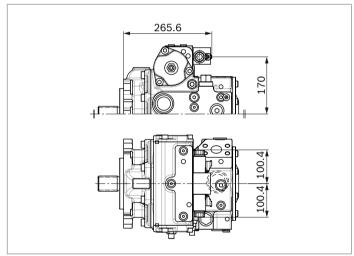
⁸⁾ The countersink can be deeper than as specified in the standard.

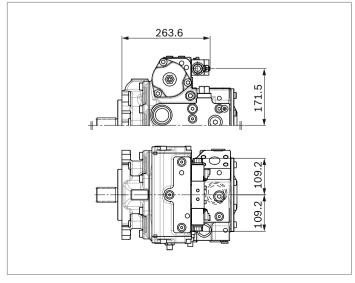

⁹⁾ Optional, see page 59

¹⁰⁾ O = Must be connected (plugged when delivered)X = Plugged (in normal operation)

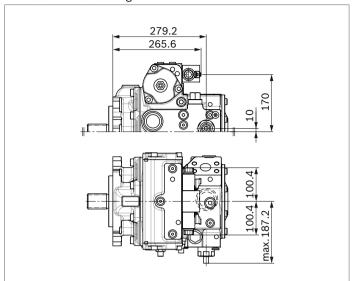

▼ **HP** – Proportional control, hydraulic, pilot-pressure related


▼ HT - Hydraulic control, direct operated

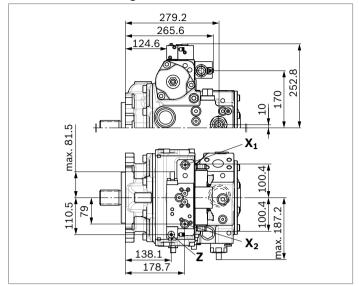

▼ EV - Electric control, direct operated, 4/3-way directional valve, one DRE


▼ HW - Proportional control, hydraulic, mechanical servo

▼ EZ - Two-point control, electric

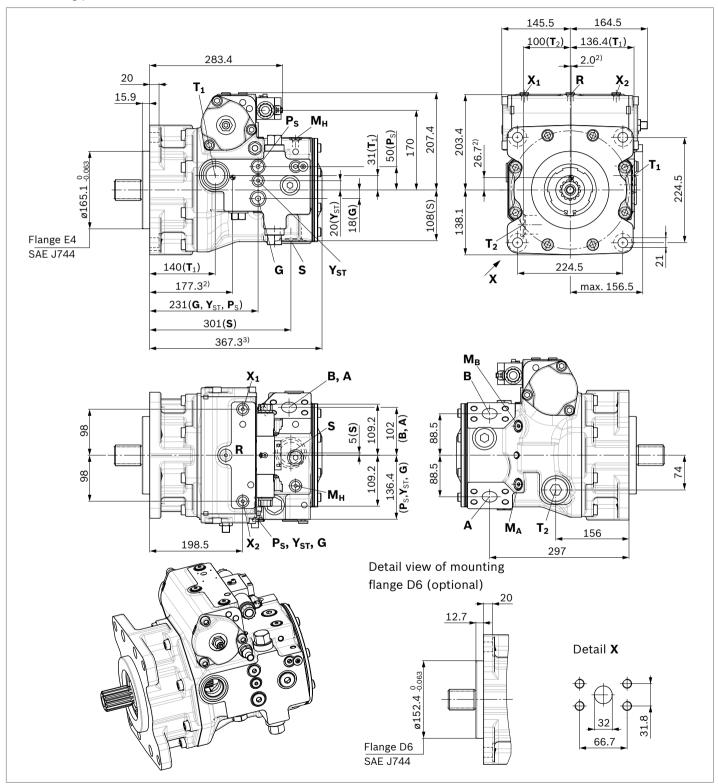


▼ ET - Electric control, direct operated, two DRE



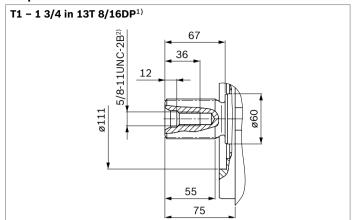
DA control valve

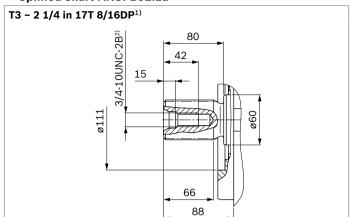
▼ DA..1 - fixed setting


▼ DA..5 – fixed setting and inch valve mounted

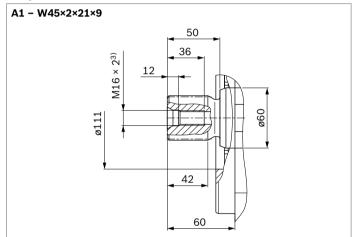
Dimensions, size 175

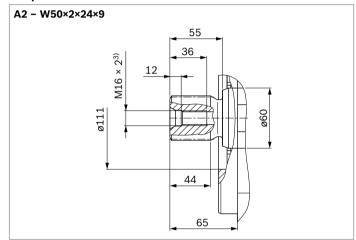
EP - Proportional control, electric


SAE working ports A and B, on left side 45° (viewed on drive shaft)1)


- 1) For SAE working ports **A** and **B**, 45° right (viewed on drive shaft), the complete case and thus the dimensions are mirrored.
- 2) Center of gravity

3) Valid for standard boost pump, overall length without boost pump and with large boost pump, see through drive, page 50


▼ Splined shaft ANSI B92.1a


▼ Splined shaft ANSI B92.1a

▼ Splined shaft DIN 5480

▼ Splined shaft DIN 5480

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Thread according to ASME B1.1

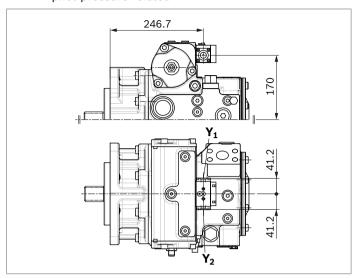
³⁾ Center bore according to DIN 332 (thread according to DIN 13)

Ports		Standard	Size	$p_{\rm max}$ [bar] ⁴⁾	State ¹⁰⁾
А, В	Working port Fastening thread	SAEJ518 ⁵⁾ DIN 13	1 1/4 in M14 × 2; 19 deep	500	0
S	Suction port	ISO 6149 ⁸⁾	M48 × 2; 22 deep	5	O ⁶⁾
T ₁	Drain port	ISO 6149 ⁸⁾	M42 × 2; 19.5 deep	3	O ⁷⁾
T ₂	Drain port	ISO 6149 ⁸⁾	M42 × 2; 19.5 deep	3	X ⁷⁾
R	Air bleed port	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	3	Х
X ₁ , X ₂	Control pressure port (upstream of orifice)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
X ₁ , X ₂	Control pressure port (upstream of orifice, HT only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
X ₃ , X ₄ ⁹⁾	Stroking chamber pressure port	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
G	Boost pressure port inlet	ISO 6149 ⁸⁾	M22 × 1.5; 15.5 deep	40	Х
Ps	Pilot pressure port inlet	ISO 6149 ⁸⁾	M18 × 1.5; 14.5 deep	40	Х
Ps	Pilot pressure port inlet (DA6 only)	ISO 6149 ⁸⁾	M18 × 1.5; 14.5 deep	40	0
Y _{ST}	Pilot pressure port outlet	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
Y _{ST}	Pilot pressure port outlet (DA6 only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
Y _{HT}	Pilot pressure port outlet	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
M _A , M _B	Measuring port pressure A, B	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	500	Х
M _H	Measuring port, high pressure	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	500	Х
Y ₁ , Y ₂	Pilot pressure port (pilot signal HP only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
Z	Pilot pressure port (inch signal DA5 only)	ISO 6149 ⁸⁾	M10 × 1; 8 deep	80	0

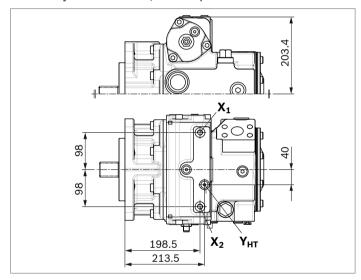
⁴⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

 $_{5)}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard.

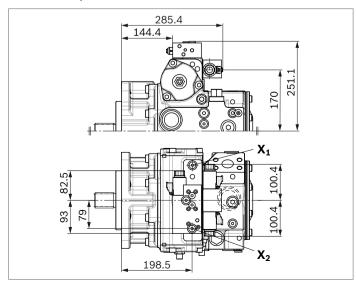
⁶⁾ Plugged for external boost pressure supply.

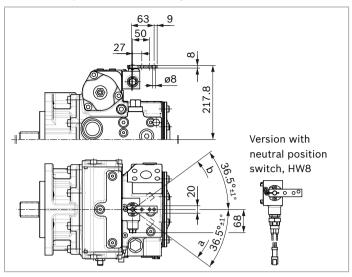

⁷⁾ Depending on installation position, ${\bf T_1}$ or ${\bf T_2}$ must be connected (see also installation instructions on page 68).

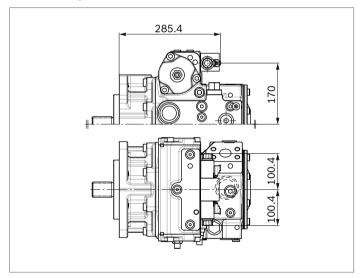
⁸⁾ The countersink can be deeper than as specified in the standard.

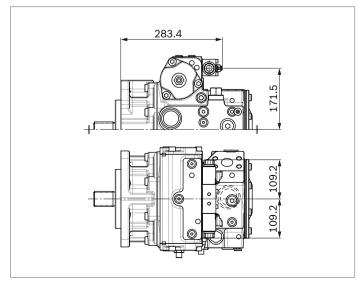

⁹⁾ Optional, see page 59

¹⁰⁾ O = Must be connected (plugged when delivered)X = Plugged (in normal operation)

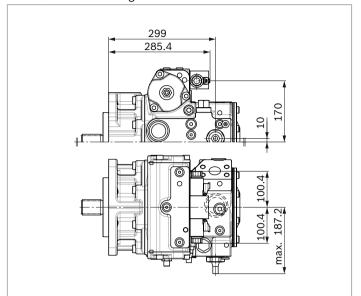

▼ **HP** – Proportional control, hydraulic, pilot-pressure related


▼ HT - Hydraulic control, direct operated

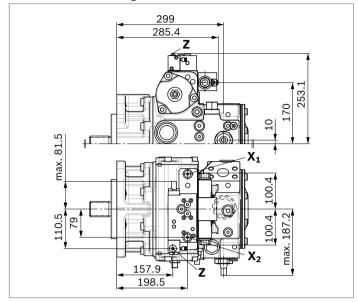

▼ EV - Electric control, direct operated, 4/3-way directional valve, one DRE


▼ HW - Proportional control, hydraulic, mechanical servo

▼ EZ - Two-point control, electric



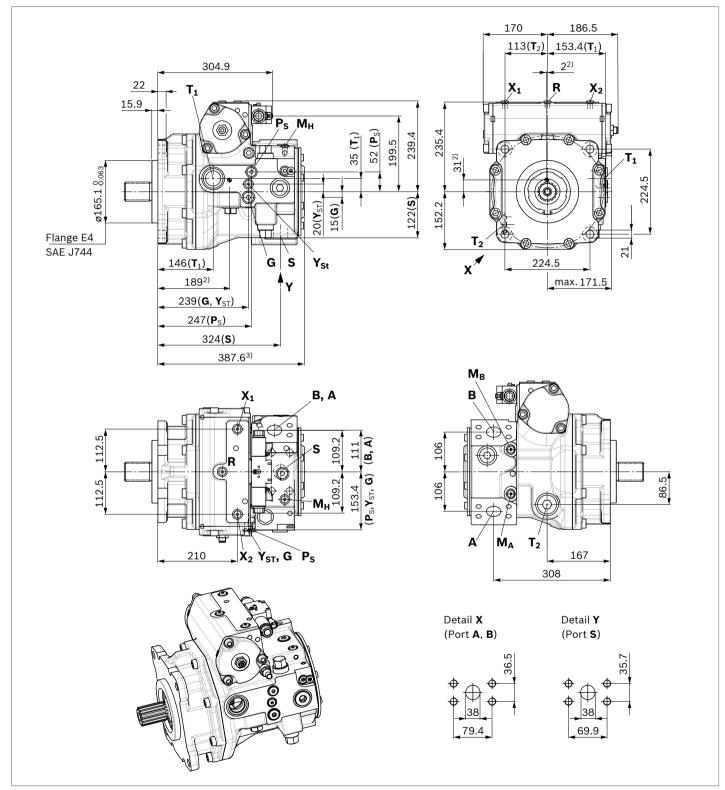
▼ ET - Electric control, direct operated, two DRE



DA control valve

▼ DA..1 - fixed setting

▼ DA..5 – fixed setting and inch valve mounted

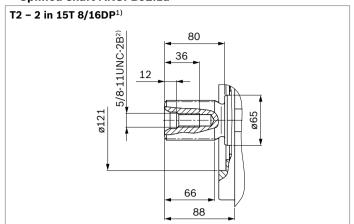


42

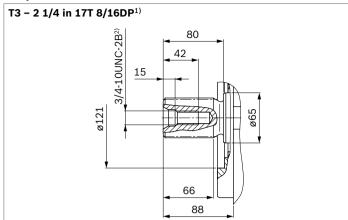
Dimensions, size 210

EP - Proportional control, electric

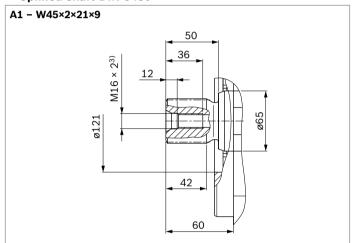
SAE working ports A and B, on left side 45° (viewed on drive shaft)1)

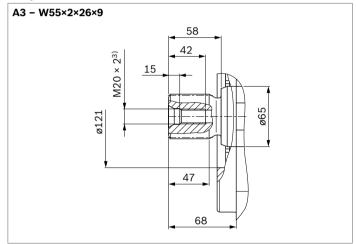


 $_{\rm 1)}$ For SAE working ports ${\bf A}$ and ${\bf B},$ 45° right (viewed on drive shaft), the complete case and thus the dimensions are mirrored.


²⁾ Center of gravity

³⁾ Valid without boost pump and for standard boost pump, overall length with large boost pump, see through drive, page 50


▼ Splined shaft ANSI B92.1a


▼ Splined shaft ANSI B92.1a

▼ Splined shaft DIN 5480

▼ Splined shaft DIN 5480

 $_{\rm 1)}$ Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

 $_{\rm 2)}\,$ Thread according to ASME B1.1

³⁾ Center bore according to DIN 332 (thread according to DIN 13)

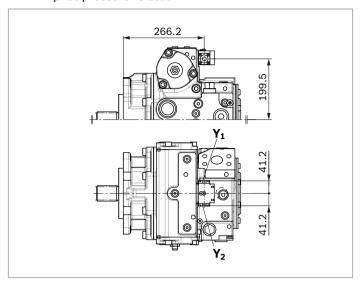
44 **A4VG Series 40** | Axial piston variable pump Dimensions, size 210

Ports		Standard	Size	$p_{\rm max}$ [bar] ⁴⁾	State ¹⁰⁾
A, B	Working port Fastening thread	SAEJ518 ⁵⁾ DIN 13	1 1/2 in M16 × 2; 21 deep	500	0
S	Suction port Fastening thread	SAEJ518 ⁵⁾ DIN 13	1 1/2 in M12 × 1.75; 20 deep	5	O ₆₎
T ₁	Drain port	ISO 6149 ⁸⁾	M42 × 2; 19.5 deep	3	O ⁷⁾
T ₂	Drain port	ISO 6149 ⁸⁾	M42 × 2; 19.5 deep	3	X ⁷⁾
R	Air bleed port	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	3	Х
X ₁ , X ₂	Control pressure port (upstream of orifice)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
X ₁ , X ₂	Control pressure port (upstream of orifice, HT only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
X ₃ , X ₄ ⁹⁾	Stroking chamber pressure port	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
G	Boost pressure port inlet	ISO 6149 ⁸⁾	M22 × 1.5; 15.5 deep	40	Х
Ps	Pilot pressure port inlet	ISO 6149 ⁸⁾	M18 × 1.5; 14.5 deep	40	Х
Ps	Pilot pressure port inlet (DA6 only)	ISO 6149 ⁸⁾	M18 × 1.5; 14.5 deep	40	0
Y _{ST}	Pilot pressure port outlet	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
Y _{ST}	Pilot pressure port outlet (DA6 only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
Y _{HT}	Pilot pressure port outlet	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
M _A , M _B	Measuring port pressure A, B	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	500	Х
M _H	Measuring port, high pressure	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	500	Х
Y ₁ , Y ₂	Pilot pressure port (pilot signal HP only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
Z	Pilot pressure port (inch signal DA5 only)	ISO 6149 ⁸⁾	M10 × 1; 8 deep	80	0

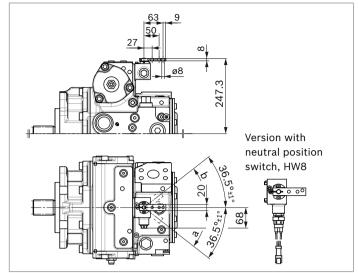
⁴⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

 $_{5)}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard.

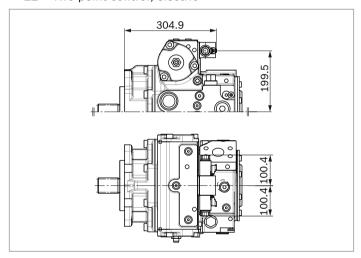
⁶⁾ Plugged for external boost pressure supply.


⁷⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 68).

⁸⁾ The countersink can be deeper than as specified in the standard.


⁹⁾ Optional, see page 59

¹⁰⁾ O = Must be connected (plugged when delivered)
X = Plugged (in normal operation)

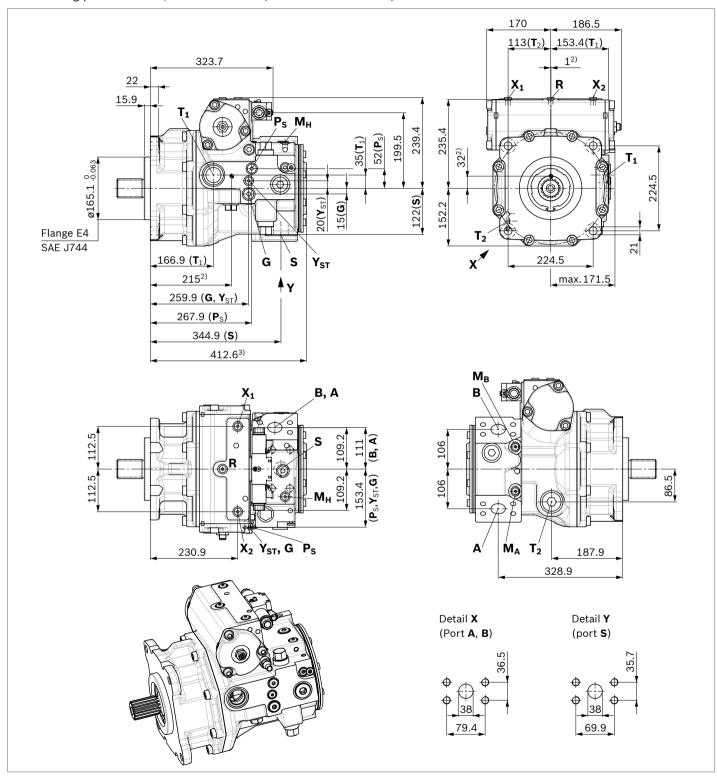

▼ **HP** – Proportional control, hydraulic, pilot-pressure related

▼ HW - Proportional control, hydraulic, mechanical servo

▼ **EZ** – Two-point control, electric

DA control valve

▼ DA..1 – fixed setting

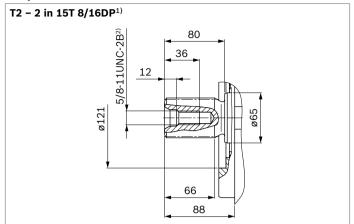


46

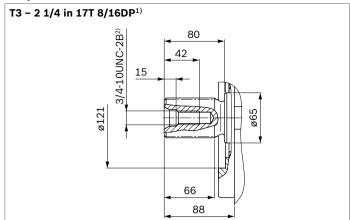
Dimensions, size 280

EP - Proportional control, electric

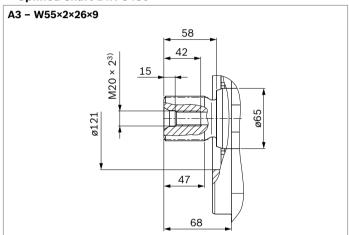
SAE working ports A and B, on left side 45° (viewed on drive shaft)1)



 $_{\rm 1)}$ For SAE working ports ${\bf A}$ and ${\bf B},$ $45^{\rm o}$ right (viewed on drive shaft), the complete case and thus the dimensions are mirrored.


²⁾ Center of gravity

³⁾ Valid for standard boost pump, overall length without boost pump see through drive, page 50


▼ Splined shaft ANSI B92.1a

▼ Splined shaft ANSI B92.1a

▼ Splined shaft DIN 5480

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

 $_{\rm 2)}\,$ Thread according to ASME B1.1

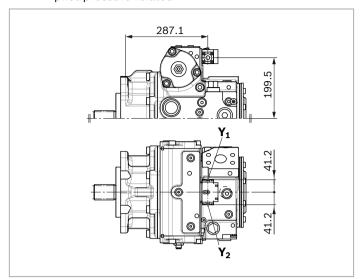
 $_{
m 3)}$ Center bore according to DIN 332 (thread according to DIN 13)

Ports		Standard	Size	$p_{\sf max}$ [bar] $^{4)}$	State ¹⁰⁾
A, B	Working port	SAEJ518 ⁵⁾	1 1/2 in	500	0
	Fastening thread	DIN 13	M16 × 2; 21 deep		
S	Suction port fastening thread	SAEJ518 ⁵⁾	1 1/2 in	5	O ₆)
		DIN 13	M12 × 1.75; 20 deep		
T ₁	Drain port	ISO 6149 ⁸⁾	M42 × 2; 19.5 deep	3	O ⁷⁾
T ₂	Drain port	ISO 6149 ⁸⁾	M42 × 2; 19.5 deep	3	X ⁷⁾
R	Air bleed port	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	3	X
X ₁ , X ₂	Control pressure port (upstream of orifice)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	X
X ₁ , X ₂	Control pressure port (upstream of orifice, HT only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
X ₃ , X ₄ ⁹⁾	Stroking chamber pressure port	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
G	Boost pressure port inlet	ISO 6149 ⁸⁾	M22 × 1.5; 15.5 deep	40	Х
Ps	Pilot pressure port inlet	ISO 6149 ⁸⁾	M18 × 1.5; 14.5 deep	40	Х
Ps	Pilot pressure port inlet (DA6 only)	ISO 6149 ⁸⁾	M18 × 1.5; 14.5 deep	40	0
Y _{ST}	Pilot pressure port outlet	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	Х
Y _{ST}	Pilot pressure port outlet (DA6 only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
Y _{HT}	Pilot pressure port outlet	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
M _A , M _B	Measuring port pressure A, B	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	500	Х
M _H	Measuring port, high pressure	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	500	Х
Y ₁ , Y ₂	Pilot pressure port (pilot signal HP only)	ISO 6149 ⁸⁾	M14 × 1.5; 11.5 deep	40	0
Z	Pilot pressure port (inch signal DA5 only)	ISO 6149 ⁸⁾	M10 × 1; 8 deep	80	0

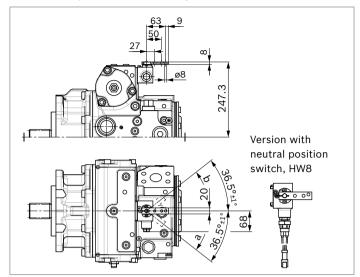
⁴⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

 $_{\mbox{\scriptsize 5)}}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard.

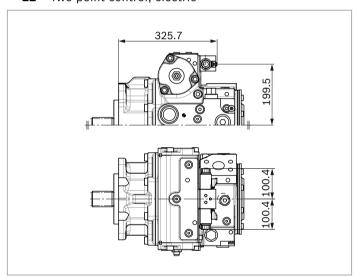
⁶⁾ Plugged for external boost pressure supply.


⁷⁾ Depending on installation position, ${\bf T_1}$ or ${\bf T_2}$ must be connected (see also installation instructions on page 68).

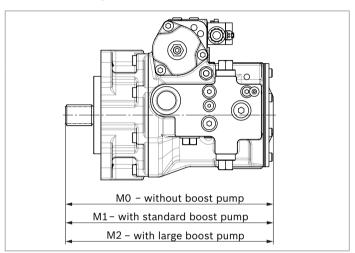
⁸⁾ The countersink can be deeper than as specified in the standard.


⁹⁾ Optional, see page 59

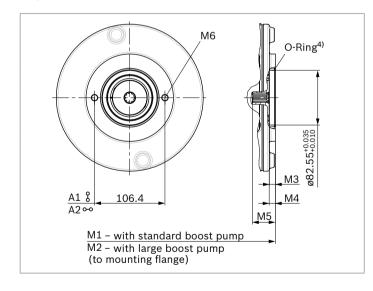
¹⁰⁾ O = Must be connected (plugged when delivered)
X = Plugged (in normal operation)


▼ **HP** – Proportional control, hydraulic, pilot-pressure related

▼ HW - Proportional control, hydraulic, mechanical servo


▼ **EZ** – Two-point control, electric

Dimensions, through drive


Flange SAE	J744 ¹⁾		Hub for	splined shaft ²⁾								
Diameter	Mounting ³⁾	Code	Diamete	er	Code	110	125	145	175	210	280	
Without thro	ugh drive					•	•	•	•	•	•	0000
82-2 (A)	8	A1	5/8 in	9T 16/32DP	S2	•	-	•	•	-	0	A1S2
		A1	3/4 in	11T 16/32DP	S3	•	-	•	•	•	•	A1S3
	0-0	A2	5/8 in	9T 16/32DP	S2	•	•	•	•	0	•	A2S2
		A2	3/4 in	11T 16/32DP	S3	•	-	•	•	•	•	A2S3

▼ Without through drive, without boost pump, with standard boost pump or with large boost pump

NG	M0	M1	M2
110	314.3	318.3	322.3
125	314.3	323.3	-
145	344.2	344.2	347.5
175	363.8	367.3	370.1
210	387.6	387.6	392.7
280	407.3	412.6	_

▼ 82-2

NG	М1	M2	МЗ	M4	М5	M6 ⁵⁾
110	324.3	328.3	9	9.4	34.6	M10 × 1.5;
125	328.3	-	9	10	35	13 deep
145	346.2	349.5	9	9.3	34.7	_
175	369.3	372.1	9	9.1	33.4	
210	389.6	394.7	9	7.3	33	
280	415.6	-	9.7	9.4	34.1	_

- 1) The through-drive shaft is only supplied with the fastening thread corresponding to the ordering code designation.
- $_{\rm 2)}$ Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 3) Mounting hole pattern viewed on through drive with control at top
- 4) O-ring included in the scope of delivery
- $_{5)}$ Thread according to DIN 13

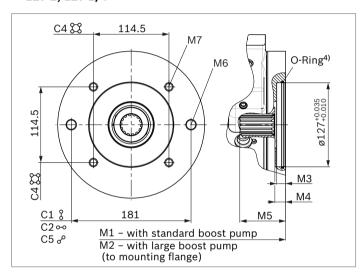
Flange SAE J	744 ¹⁾		Hub for	splined shaft ²⁾	•	•	•	•	•			
Diameter	Mounting ³⁾	Code	Diamete	er	Code	110	125	145	175	210	280	
101-2 (B)	8	B1	7/8 in	13T 16/32DP	S4	•	•	•	•	•	•	B1S4
		B1	1 in	15T 16/32DP	S5	•	-	•	•	•	•	B1S5
	0-0	B2	7/8 in	13T 16/32DP	S4	•	•	•	•	•	•	B2S4
		B2	1 in	15T 16/32DP	S5	•	_	•	•	0	0	B2S5
	8	B5	7/8 in	13T 16/32DP	S4	•	_	•	0	0	0	B5S4
		B5	1 in	15T 16/32DP	S5	0	_	•	0	•	•	B5S5
101-4 (B)	\$3	B4	7/8 in	13T 16/32DP	S4	0	-	•	0	•	0	B4S4
		B4	1 in	15T 16/32DP	S5	•	_	•	0	0	0	B4S5

▼ 101-2, 101-4

NG	M1	M2	М3	M4	M5	M6 ⁵⁾
110	327.3	331.3	9	9.4	34.6	M12 × 1.75;
125	331.1	-	10	11	48	16 deep
145	349.2	352.5	9	9.3	34.7	_
175	372.3	375.1	9	9.1	33.4	_
210	392.6	397.7	On re	quest	M12 × 1.75;	
280	418.6	_	On re	guest		13 deep

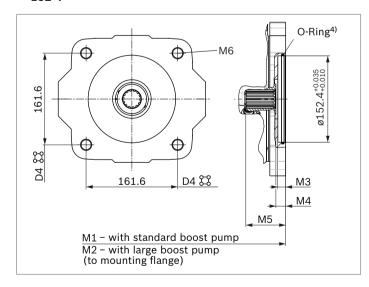
¹⁾ The through-drive shaft is only supplied with the fastening thread corresponding to the ordering code designation.

²⁾ Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5


³⁾ Mounting hole pattern viewed on through drive with control at top

⁴⁾ O-ring included in the scope of delivery

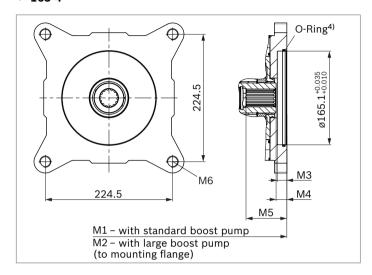
⁵⁾ Thread according to DIN 13


Flange SAE J	J744 ¹⁾		Hub for	splined shaft ²⁾								
Diameter	Mounting ³⁾	Code	Diamete	r	Code	110	125	145	175	210	280	
127-2 (C)	8	C1	1 in	15T 16/32DP	S5	-	_	0	-	-	-	C1S5
		C1	1 1/4 in	14T 12/24DP	S7	•	-	•	0	0	0	C1S7
	0-0	C2	1 1/4 in	14T 12/24DP	S7	•	•	•	•	•	•	C2S7
		C2	1 3/8 in	21T 16/32DP	V8	0	_	•	•	-	-	C2V8
		C2	1 3/4 in	13T 8/16DP	T1	-	-	•	•	-	-	C2T1
	go	C5	1 1/4 in	14T 12/24DP	S7	•	-	•	0	0	0	C5S7
127-4 (C)		C4	1 1/4 in	14T 12/24DP	S7	•	-	•	•	0	•	C4S7
		C4	1 3/8 in	21T 16/32DP	V8	•	•	_	_	-	_	C4V8
152-4 (D)	\$3	D4	1 3/4 in	13T 8/16DP	T1	-	_	•	•	•	•	D4T1

▼ 127-2, 127-2/4

NG	M1	M2	М3	M4	M5	M6 ⁵⁾ 2-hole	M7 ⁵⁾ 4-hole
110	333.3	337.3	14	16.9	58.2	M16 × 2; 21 deep	M12 × 1.75; 19 deep
125	On req	uest					
145	355.2	358.5	14	16.3	69.6	M16 × 2;	M12 × 1.75;
175	378.3	381.1	14	16.3	62.7	21 deep	19 deep
210	403.7	408.8	27	14.2	56.4		
280	424.6	_	27	14.4	58.6	_	

▼ 152-4



NG	M1	M2	МЗ	M4	M5	M6 ⁵⁾
145	356.2	359.5	14	10	74.4	M20 × 2.5;
175	379.3	382.1	14	17.8	76.3	22 deep
210	411.6	416.7	26	14.3	78.8	
280	432.5	-	26	14.5	84	_

- 1) The through-drive shaft is only supplied with the fastening thread corresponding to the ordering code designation.
- $_{2)}$ Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 3) Mounting hole pattern viewed on through drive with control at top
- 4) O-ring included in the scope of delivery
- $_{5)}$ Thread according to DIN 13

Flange SAE J	J744 ¹⁾		Hub for s	splined shaft ²⁾								
Diameter	Mounting ³⁾	Code	Diamete	r	Code	110	125	145	175	210	280	
165-4 (E)	X	E4	1 3/4 in	13T 8/16DP	T1	-	_	_	•	•	-	E4T1
			2 in	15T 8/16DP	T2	_	-	-	-	•	•	E4T2

▼ 165-4

NG	M1	M2	М3	М4	M5	M6 ⁵⁾
175	381	383.8	17	19.4	77.9	M20 × 2.5; 22 deep
210	407.3	412.4	On rec	luest		M20 × 2.5; 27 deep
280	447.3	-	On rec	luest		M20 × 2.5; 22 deep

- 1) The through-drive shaft is only supplied with the fastening thread corresponding to the ordering code designation.
- 2) Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 3) Mounting hole pattern viewed on through drive with control at top
- 4) O-ring included in the scope of delivery
- 5) Thread according to DIN 13

Overview of mounting options

Through drive ⁶⁾			Mounting option – 2nd pump							
Flange	Hub for splined shaft	Code	A4VG/40 NG (shaft)	A4VG/32 NG (shaft)	A10VG NG (shaft)	A10VO/3x NG (shaft)	A10V(S)O/5x NG (shaft)	A11VO/1 NG (shaft)	External gear pump ⁷⁾	
82-2 (A)	5/8 in	A_S2	-	_	_	18 (U)	10, 18 (U)	-	AZPF NG4 to 22	
	3/4 in	A_S3	_	-	_	18 (S)	10, 18 (S)	_		
101-2 (B)	7/8 in	B_S4	_	-	18 (S)	28 (S) 45 (U)	28 (S) 45 (U)	-	AZPN NG20 to 36 AZPG NG32 to 50	
	1 in	B_S5	-	28 (S)	28, 45 (S)	45 (S)	45 (S) 60, 63, 72 (U)	40 (S)	-	
101-4 (B)	7/8 in	B4S4	-	-	-	-	-	_		
	1 in	B4S5	_	-	-	-	-	_		
127-2 (C)	1 in	C1S5	_	40 (U)	_	71 (U)	-	_	-	
	1 1/4 in	C_S7	-	40, 56, 71 (S)	63 (S)	71 (S) 100 (U)	85, 100 (U)	40 (S)	-	
	1 3/8 in	C2V8	110 (V8)	56, 71 (T)	63 (T)	-	-	40 (T)		
	1 3/4 in	C2T1	110, 125 (T1)	-	-	-	-	_		
127-4 (C)	1 1/4 in	C4S7	-	-	-	-	60, 63, 72 (S) 85, 100 (U)	-		
	1 3/8 in	C4V8	110 (V8)	-	-	-	-	_		
152-4 (D)	1 3/4 in	D4T1	110, 125, 145, 175 (T1)	90, 125 (S)	-	140, 180 (S)	-	95, 130, 145 (S)	-	
165-4 (E)	1 3/4 in	E4T1	175 (T1)	180 (S)	-	_	-	190, 260 (S)	-	
	2 in	E4T2	210, 280 (T2)	-	_	_	-	190 (T)		

Notice

The mounting options listed only apply for drive shaft versions with undercut. Please contact us for drive shafts without undercut.

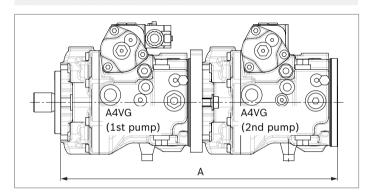
- 6) Availability of the individual sizes, see type code on page 4.
- 7) Bosch Rexroth recommends special versions of the gear pumps. Please contact us.

Combination pumps A4VG + A4VG

Total length A¹⁾ with standard mounting flange

A4VG	A4VG 2. Pump ²⁾					
1st pump	NG110	NG125	NG145	NG175	NG210	NG280
NG110	652.6	,			_	_
NG125	On request	On request			_	_
NG145	674.5	On request	700.4		_	-
NG175	697.6	On request	723.5	748.3	_	-
NG210	729.9	On request	755.8	On request	807.9	_
NG280	755.9	On request	781.8	On request	On request	On request

By using combination pumps, it is possible to have independent circuits without the need for splitter gearboxes. When ordering combination pumps, the type designations of the 1st and 2nd pumps must be linked by a "+". Order example:


A4VG145EP1DP000/40MRNC6S71FC2S7AS00-0 + A4VG110EP1DP000/40MRNC2S71F0000AS00-0

A tandem pump, with two pumps of equal size, is permissible without additional supports, assuming that the dynamic acceleration does not exceed maximum $10 \ g \ (= 98.1 \ m/s^2)$.

We recommend using the 4-hole mounting flanges. For combination pumps consisting of more than two pumps, the mounting flange must be rated for the permissible moment of inertia, please contact us.

Notice

The combination pump type code is shown in shortened form in the order confirmation.

¹⁾ Overall length is valid for standard mounting flange and integrated boost pump.

^{2) 2}nd pump without through drive and with boost pump, F0000/V0000

High-pressure relief valves

The two high-pressure relief valves protect the hydrostatic transmission (pump and motor) from overloading. They limit the maximum pressure in the respective high-pressure line and serve simultaneously as boost valves.

High-pressure relief valves are not working valves and are only suitable for pressure peaks or high rates of pressure change.

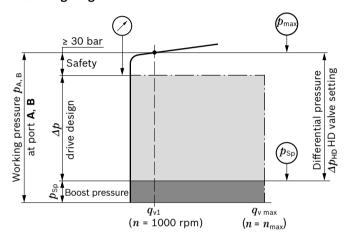

Setting ranges

High-pressure relief valve A and B	Differential pressure setting $\Delta p_{ ext{HD}}$
Preferred values	400 bar
	410 bar
	420 bar
	430 bar
	440 bar
	450 bar
	460 bar
	470 bar
Optional values	300 bar
	320 bar
	340 bar
	360 bar
	380 bar

Settings on high-pressure relief valve A and	I B
Differential pressure setting	Δp_{HD} = bar
Cracking pressure of the HD valve (at $q_{ m V 1}$)	p_{max} = bar
$(p_{\text{max}} = \Delta p_{\text{HD}} + p_{\text{Sp}})$	

- ▶ The valve settings are made at n = 1000 rpm and at $V_{\rm g \ max} \ (q_{\rm v \ 1})$. There may be deviations in the cracking pressures with other operating parameters.
- ► When ordering, state differential pressure setting in plain text.

▼ Circuit diagram

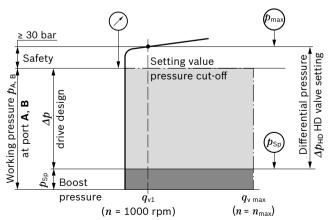


High-pressure relief valve without pressure cut-off

▼ Example

Working		Boost		Differential	
pressure		pressure		pressure	
$p_{A,B}$		p_{Sp}		Δp_{HD}	
450 bar	-	20 bar	=	430 bar	

▼ Setting diagram



High-pressure relief valve with pressure cut-off

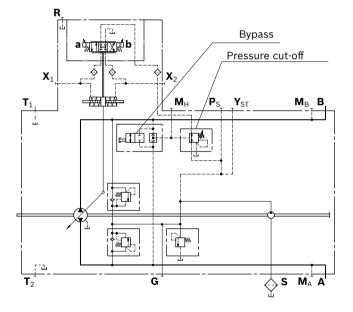
▼ Example

Working pressure		Boost pressure		Safety		Differential pressure
$p_{A,B}$		p_{Sp}				Δp_{HD}
450 bar	-	20 bar	+	30 bar	=	400 bar

▼ Setting diagram

Pressure cut-off

The pressure cut-off is a pressure control which, after reaching the set pressure, adjusts the displacement of the pump back to $V_{\rm g\,min}$.


This valve prevents the operation of the high-pressure relief valves when accelerating or decelerating.

The high-pressure relief valves protect against the pressure peaks which occur during fast swiveling of the swashplate and limit the maximum pressure in the system.

The setting range of the pressure cut-off may be anywhere within the entire working pressure range. However, it must be set 30 bar lower than the setting value of the high-pressure relief valves (see setting diagram, page 55).

Please state the setting value of the pressure cut-off in plain text when ordering.

▼ Circuit diagram with pressure cut-off Example: electric control, EP D

Bypass function

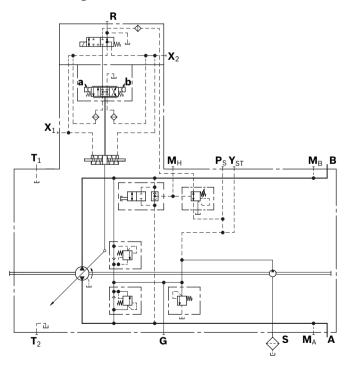
A connection between the two high-pressure channels **A** and **B** can be established using the bypass valve (e.g. for machine towing).

Towing speed

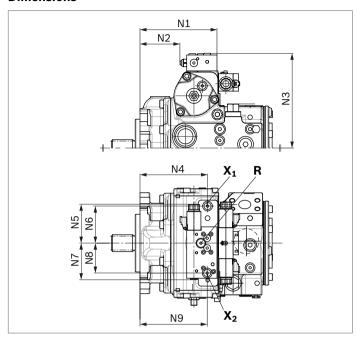
The maximum towing speed is dependent on the gear ratio in the vehicle and must be calculated by the vehicle manufacturer. The corresponding flow of $q_{\rm V}$ = 30 l/min may not be exceeded.

Towing distance

The vehicle may only be towed out of the immediate danger zone.


Neutral valve

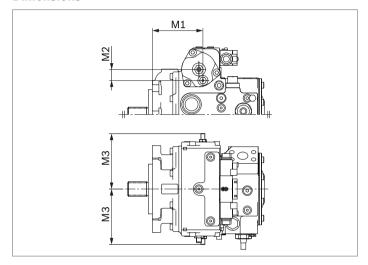
Actuation of the switching solenoid enables pilot pressure through-flow into the control device of the pump. The pump can be swiveled out. When the solenoid is de-energized, this connection is interrupted and simultaneously the two stroking chambers are connected to each other and relieved to the pump housing. This ensures the pump is torque-free.


The return swivel times can be specifically and precisely adapted to the respective customer application. A second capability for deactivation and therefore making the pump torque-free is therefore realized when the neutral valve is used in safety-critical applications.

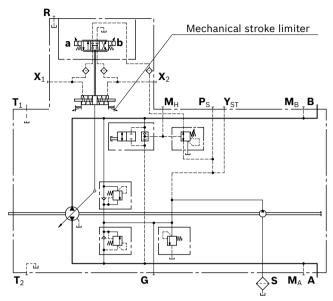
Technical data		
Voltage	12 V (±20%)	24 V (±20%)
Neutral position $V_g = 0$	de-energized	de-energized
Position $V_{\rm g\ max}$	Current switched on	Current switched on
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Minimum active current required	1.2 A	0.6 A
Duty cycle	100%	100%
Type of protection: see connector	version page 65	

▼ Circuit diagram

Dimensions

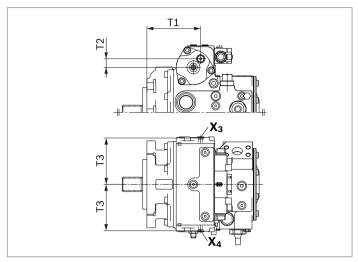


N1 198.4 198.4 203.6 223.4 237.9 258.8 N2 100.7 100.7 105.9 125.7 140.2 161.1 N3 229.8 229.8 250.5 250.5 283 283 N4 173.5 173.5 178.7 198.5 210 230.9 N5 102.5 102.5 102.5 102.5 102.5 N6 83 83 98 98 112.5 112.5
N3 229.8 229.8 250.5 250.5 283 283 N4 173.5 173.5 178.7 198.5 210 230.9 N5 102.5 102.5 102.5 102.5 102.5 102.5
N4 173.5 173.5 178.7 198.5 210 230.9 N5 102.5 102.5 102.5 102.5 102.5 102.5
N5 102.5 102.5 102.5 102.5 102.5 102.5
N6 83 83 98 98 112.5 112.5
10 00 00 112.0
N7 96.5 96.5 96.5 96.5 96.5
N8 79 79 79 79 79
N9 172.5 172.5 177.7 197.5 212 232.9

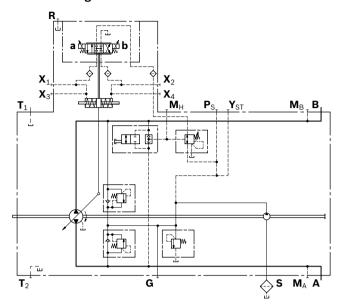

Mechanical stroke limiter

The mechanical stroke limiter is an auxiliary function allowing the maximum displacement of the pump to be steplessly reduced, regardless of the control module used. By means of two threaded pins, the stroke of the stroking piston and thus the maximum swivel angle of the pump can be limited.

Dimensions



NG	M1	M2	М3	
110	153.6	27.7	157.3	
125	153.6	27.7	157.3	
145	155	33.8	170.1	
175	174.8	33.8	170.1	
210	183.9	38.1	199.6	
280	204.7	38.1	199.6	



Stroking chamber pressure port X_3 and X_4

Dimensions

NG	T1	T2	Т3	
110	161.8	21.8	128	
125	161.8	21.8	128	
145	164.9	26.4	142	
175	184.7	26.4	142	
210	195.7	30.6	166	
280	216.6	30.6	166	

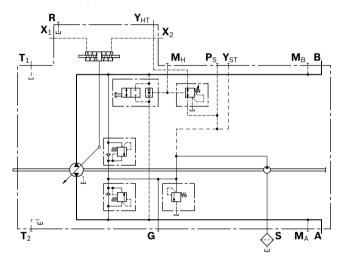
Ports		Standard ¹⁾	Size	p_{max} [bar] $^{2)}$	State ³⁾
X ₃ , X ₄	Stroking chamber pressure port	ISO 6149	M14 × 1.5; 11.5 deep	40	X

¹⁾ The countersink can be deeper than as specified in the standard.

²⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

³⁾ X = Plugged (in normal operation)

Filtration in the boost pump suction line


Version S

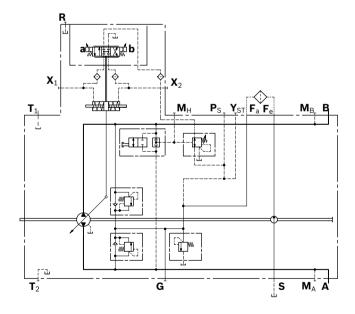
Suction filter without bypass
With contamination indicator
ter element
$\Delta p \le 0.1$ bar
$\Delta p \le 0.3$ bar
≥ 0.8 bar absolute
≥ 0.5 bar absolute
≤ 5 bar absolute

Use of version S is preferred.

The suction filter is not included in the scope of delivery.

▼ Circuit diagram

Filtration in the boost pump pressure line


Version D Ports for external boost circuit filtration

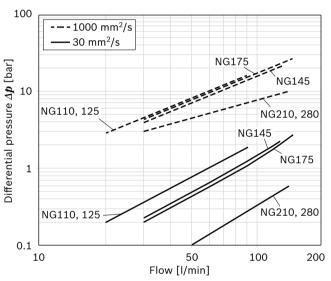
Ports	
Boost pressure inlet	Port F _a
Boost pressure outlet	Port F _e
Filter version	Boost pressure filter without bypass
Recommendation	With contamination indicator
Filter arrangement	Separate in the pressure line (inline filter)
Permissible flow resist	ance at filter element ¹⁾
At $\nu = 30 \text{ mm}^2/\text{s}$	$\Delta p \le 1$ bar
For cold start	$\Delta p \leq 3$ bar

Notice

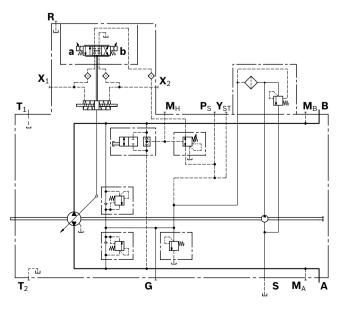
- ► Filters with a bypass **not recommended**, (exception HT, see below). Please contact us for applications with a bypass.
- ► On versions with HT control (with pilot pressure not from a boost circuit), a filter **with** a bypass and **with** a contamination indicator must be used.

The boost pressure filter is not included in the scope of delivery.

 $[\]overline{}$ 1) Valid for entire speed range n_{\min} – n_{\max}

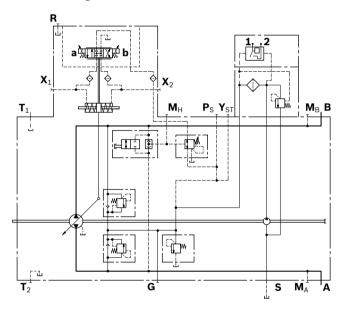

Version F¹⁾
Attachment filter with cold start valve

Filter version	Attachment filter without bypass
Recommendation	Version with contamination indicator, see B (differential pressure $\Delta p = 5$ bar)
Filter grade (absolute)	20 μm
Filter material	Glass fiber
Pressure rating	100 bar
Filter arrangement	Mounted on pump


The attachment filter is equipped with a cold start valve and thereby protects the pump from damage. The valve opens at flow resistance of $\Delta p \ge 6$ bar.

▼ Filter characteristics

Differential pressure/flow characteristics to ISO 3968 (valid for clean filter element).


▼ Circuit diagram

Version B¹⁾ Attachment filter with cold start valve and electric contamination indicator

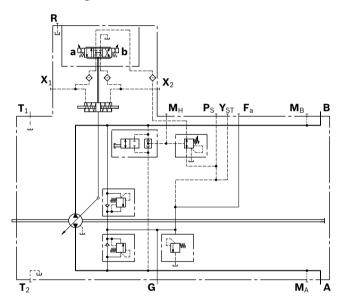
Filtration similar to version F, however with additional electric contamination indicator.

electrical
DEUTSCH DT04-2P-EP04
Δp = 5 bar
12 V DC 24 W
24 V DC 48 W
DIN EN 60529

¹⁾ If using the filter versions F and B, make sure that a hydraulic fluid with a minimum electrical conductance of 300 pS/m is used. Please contact us if this value cannot be observed.

External boost pressure supply

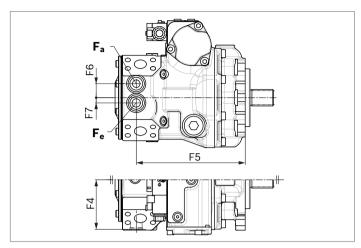
Version E


This variant should be used in versions without integrated boost pump (\mathbf{U}) .

Port **S** is plugged.

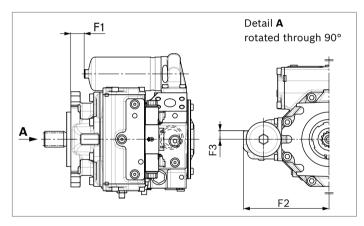
The boost pressure supply comes from port **G**.

The filter should be installed separately at port **G** before the boost pressure supply.

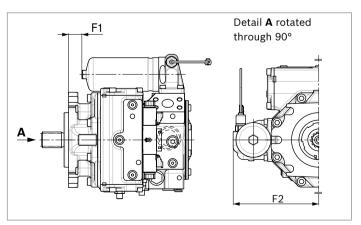

To ensure the functional reliability, maintain the required cleanliness level for the boost fluid fed in at port **G** (see page 7).

Dimensions with mounted filter

▼ Version D


Ports for external boost circuit filtration

NG	F1	F2	F3	F4	F5	F6	F7	F _a , F _e ¹⁾
110	76.5	229.5	22	121	264.5	37	14	M33 × 2;
125	76.5	229.5	22	121	264.5	37	14	19 deep
145	37.2	239.5	22	131	288.2	37	14	Accord- ing to
175	57	239.5	22	131	308	37	14	ISO6149
210	69	266.5	22	146.3	325	43	10	-
280	89.9	266.5	22	146.3	345.9	43	10	_


▼ Version F

Attachment filter without contamination indicator

▼ Version B

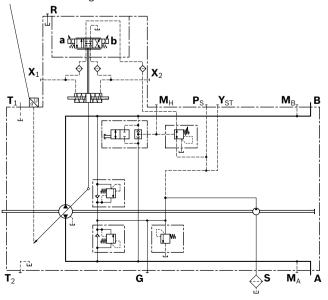
Attachment filter with cold start valve and electric contamination indicator

¹⁾ The countersink can be deeper than as specified in the standard.

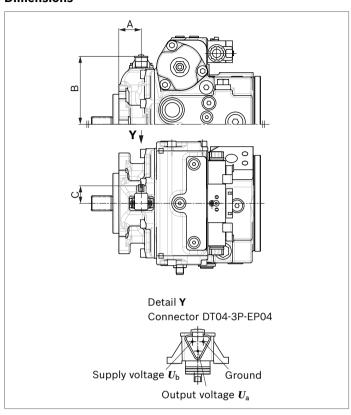
Swivel angle sensor

The swivel angle sensor is used to detect the swivel angle of axial piston units and thus the displacement using a Hall-effect based sensor IC. The determined measurement value is converted into an analog signal.

Please contact us if the swivel angle sensor is used for control.


Characteristics			
Supply voltage U_{b}	10 to 30	V DC	
Output voltage U_{a}	1 V	2.5 V	4 V
	$(V_{g\;max})$	$(V_{g\ 0})$	$(V_{g\;max})$
Reverse polarity protection	Short-cir	cuit resi	stant
EMC resistance	Details on request		
Operating temperature range	-40 °C to +115 °C		
Vibration resistance	10 g / 5 to 2000 Hz		
sinusoidal vibration EN 60068-2-6			
Shock resistance:	25 g		
continuous shock IEC 68-2-29			
Salt spray resistance (DIN 50 021-SS)	96 h		
Type of protection with installed	IP67 – D	IN EN 60)529
mating connector IP69K - DIN 40050-9			
Housing material	Plastic		

Output voltage


Direction of rotation ¹⁾	Flow direction	Working pressure	Output voltage at $V_{ m g~0}$
Clockwise	B to A	M _A	>2.5 V
	A to B	M _B	<2.5 V
Counter-	A to B	M _B	>2.5 V
clockwise	B to A	M _A	<2.5 V

▼ Circuit diagram

Electric swivel angle sensor

Dimensions

NG	Α	В	С	
110	51.5	148.8	37	
125	51.5	148.8	37	
145	53.1	160.8	37	
175	64.4	160.8	37	
210	69	173.8	37	
280	75.1	173.8	37	

Mating connector DEUTSCH DT06-3S-EP04

Consisting of	DT designation	
1 housing	DT06-3S-EP04	
1 wedge	W3S	
2 sockets	0462-201-16141	

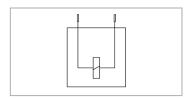
The mating connector is not included in the scope of delivery. This can be supplied by Bosch Rexroth on request (material number R902603524).

Notice

It is not possible to retrofit existing units with a swivel angle sensor.

¹⁾ For flow direction, see controls

Connector for solenoids


DEUTSCH DT04-2P-EP04

Molded, 2-pin, without bidirectional suppressor diode (standard).

The following type of protection ensues with an installed mating connector:

- ▶ IP67 (DIN EN 60529) and
- ► IP69K (DIN 40050-9)

▼ Switching symbol

▼ Mating connector DEUTSCH DT06-2S-EP04

Consisting of	DT designation
1 housing	DT06-2S-EP04
1 wedge	W2S
2 sockets	0462-201-16141

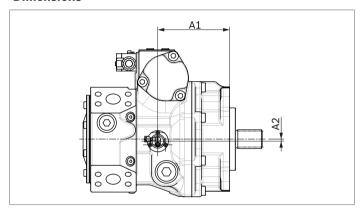
The mating connector is not included in the scope of delivery. This can be supplied by Bosch Rexroth on request (material number R902601804).

Notice

- ► If necessary, you can change the position of the connector by turning the solenoid.
- ▶ The procedure is defined in the instruction manual.

Pressure Sensor

The pressure on the working ports A and B can be recorded using the mounted PR4 pressure sensors (version M; 0 to 600 bar) in MA and MB. Type code, technical data, dimensions and details on the connector, plus safety instructions about the sensor can be found in the relevant data sheet 95156.

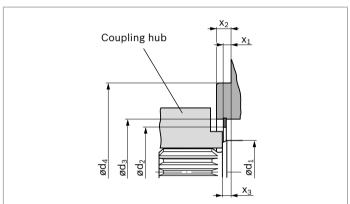

Notice

Due to the working pressure range of A4VG series 40 with a nominal pressure of 450 bar and a maximum pressure of 500 bar, only version M is approved.

Speed sensor

With the speed sensor DSA/DSM mounted, a signal proportional to pump speed can be generated. The DSA/DSM sensor measures the speed and direction of rotation. Type code, technical data, dimensions and details on the connector, plus safety instructions about the sensor can be found in the relevant data sheet 95133 – DSA or 95132 – DSM. The sensor is mounted on the port provided for this purpose with a mounting bolt.

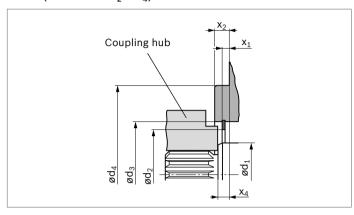
Dimensions


NG	110	125	145	175	210	280
A1	161.5	161.5	181.2	201.0	190	210.9
A2	5.5	5.5	5.5	5.5	5.5	5.5
Number of teeth	53	On request	58	61	64	71

Installation dimensions for coupling assembly

To ensure that rotating components (coupling hub) and fixed components (housing, snap ring) do not come into contact with each other, the installation conditions described here must be observed. This depends on the pump size and the splined shaft.

SAE splined shaft (spline according to ANSI B92.1a) Splined shaft **V** or **T**


The outer diameter of the coupling hub must be smaller than the inner diameter of the snap ring (dimension d_2) in the area near the drive shaft collar (dimension $x_2 - x_3$).

DIN splined shaft (spline according to DIN 5480)

Splined shaft Z or A

The outer diameter of the coupling hub must be smaller than the case diameter d_3 in the area near the drive shaft collar (dimension $x_2 - x_4$).

NG	Mounting	ød ₁	ød _{2 min}	ød ₃	ød ₄	x ₁	x ₂	X ₃	x ₄
	flange								
110	127-2/4	55	74.4	101±0.1	127 -0,063	4.0	12.7-0.5	8 +0.9	10 +0.9
	152-2/4	55	74.4	101±0.1	$152.4_{-0,063}^{0}$	6.0	12.7-0.5	8 +0.9	10 +0.9
125	127-2/4	55	74.4	101±0.1	127 00,063	4.0	12.7-0.5	8 +0.9	10 +0.9
	152-2/4	55	74.4	101±0.1	152.4 -0,063	6.0	12.7-0.5	8 +0.9	10 +0.9
145	152-2/4	60	84.4	111±0.1	152.4 -0,063	7.4	12.7-0.5	8 +0.9	10 +0.9
175	152-2/4	60	84.4	111±0.1	152.4 -0,063	7.0	12.7-0.5	8 +0.9	10 +0.9
	165-4	60	84.4	111±0.1	165.1 -0,063	7.0	15.9 _{-0.5}	8 +0.9	10 +0.9
210	165-4	65	94.4	121±0.1	165.1 -0,063	5.5	15.9-0.5	8 +0.9	10 +0.9
280	165-4	65	94.4	121±0.1	165.1 -0,063	7.0	15.9-0.5	8 +0.9 -0.6	10 +0.9

Installation instructions

General

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be observed following a longer standstill as the axial piston unit may empty via the hydraulic lines.

Particularly in the installation position "drive shaft upwards", filling and air bleeding must be carried out completely as there is, for example, a danger of dry running. The leakage in the housing area must be directed to the reservoir via the highest drain port (T_1, T_2) .

For combination pumps, the leakage must be drained off at each pump.

If a shared drain line is used for several units, make sure that the respective case pressure is not exceeded. The shared drain line must be dimensioned to ensure that the maximum permissible case pressure of all connected units is not exceeded in any operating conditions, specifically on cold start. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

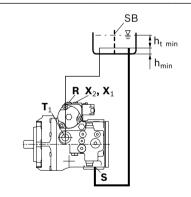
Under all operating conditions, the suction line and drain line must flow into the reservoir below the minimum fluid level. The permissible suction height h_S results from the overall loss of pressure. However, it must not be higher than $h_{S max}$ = 800 mm.

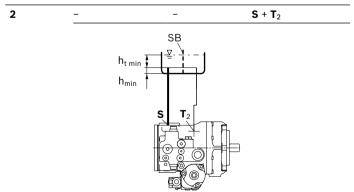
The suction pressure at port **S** must also not fall below the minimum value of 0.8 bar absolute during operation (cold start 0.5 bar absolute).

Installation position

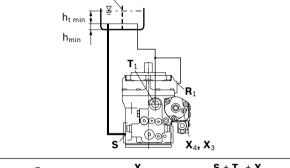
See the following examples 1 to 12.

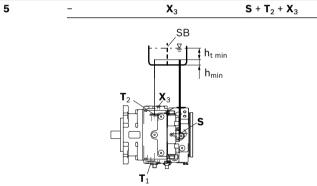
Further installation positions are available upon request. Recommended installation position: 1 and 2.

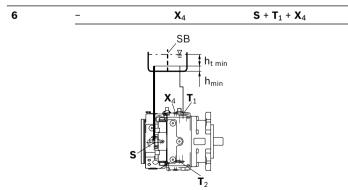

Notice


- ► If filling the stroking chambers via X₁ to X₄ is not possible in the final installation position, then this must take place before installation, e.g. in installation position 2.
- ► To prevent unexpected actuation and damage, the stroking chambers must be air bled via the ports X₁, X₂, or X₃, X₄ depending on the installation position.
- ► In certain installation positions, an influence on the control or closed loop control can be expected. Gravity, dead weight and case pressure can cause minor shifts in control characteristic curves and changes in response time.

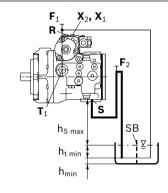
Below-reservoir installation (standard)


Below-reservoir installation means that the axial piston unit is installed outside of the reservoir and below the minimum fluid level of the reservoir.

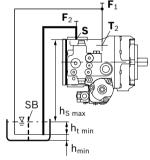

Installation position	Air bleeding the housing	Air bleeding the stroking chamber	Filling
1	R	$\mathbf{X}_1, \mathbf{X}_2$	S + T ₁ + X ₁ + X ₂



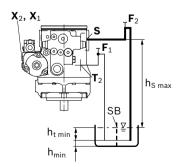
Installation position	Air bleeding the housing	Air bleeding the stroking chamber	Filling
3		$\mathbf{X}_1, \mathbf{X}_2$	S + T ₂ + X ₁ + X ₂
	X ₂ , X ₁	SB h _{t min} h _{min}	1
4	R ₁	X ₃ , X ₄	S + T ₁ + X ₃ + X ₄
	h _{t min} h _{min}	-	


Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

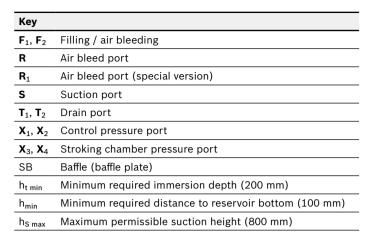

Observe the maximum permissible suction height $h_{\text{S max}}$ = 800 mm.

Recommendation for installation position 10 (drive shaft upward): A check valve in the drain line (cracking pressure 0.5 bar) can prevent the housing area from draining.


Installation position	Air bleeding the housing	Air bleeding the stroking chamber	Filling
7	F ₂ + R	X ₁ , X ₂	F ₁ + F ₂ + X ₁ + X ₂

8 $F_{2}(S) + F_{1}(T_{2}) - F_{2}(S) + F_{1}(T_{2})$

9 $F_2(S) + F_1(T_2) X_1, X_2 F_2(S) + F_1(T_2) + X_1 + X_2$


12

 $\mathbf{F}_{2}\left(\mathbf{S}\right)+\mathbf{F}_{1}\left(\mathbf{T}_{1}\right)$

 X_4

h_{min}

Installation position	Air bleeding the housing	Air bleeding the stroking chamber	Filling
10	F ₂ + R ₁	X ₃ , X ₄	F ₁ + F ₂ + X ₃ + X ₄
	F ₂ OW SB SB T T T T T T T T T T T T T	F ₁ T ₁ R ₁ S X ₄ , X	(3
11	$\mathbf{F}_{2}\left(\mathbf{S}\right)+\mathbf{F}_{1}\left(\mathbf{T}_{2}\right)$	X ₃	$F_2(S) + F_1(T_2) + X_3$
	T ₂	K ₃ S _b	

Notice

 $\mathbf{F}_{2}\left(\mathbf{S}\right)+\mathbf{F}_{1}\left(\mathbf{T}_{1}\right)+\mathbf{X}_{4}$

Ports \mathbf{F}_1 and \mathbf{F}_2 are part of the external piping and must be provided on the customer side to make filling and air bleeding easier.

Project planning notes

- ► The pump A4VG is designed to be used in closed circuit.
- ► The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified skilled personnel.
- ▶ Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- Before finalizing your design, please request a binding installation drawing.
- ► The specified data and notes contained herein must be observed.
- ► Depending on the operating conditions of the axial piston unit (working pressure, fluid temperature), the characteristic curve may shift.
- ▶ Preservation: Our axial piston units are supplied as standard with preservative protection for a maximum of 12 months. If longer preservative protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation periods apply under optimal storage conditions, details of which can be found in the data sheet 90312 or the instruction manual.
- ► Not all versions of the product are approved for use in a safety function according to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_D) for functional safety.
- ▶ Depending on the type of control used, electromagnetic effects can be produced when using solenoids. When a direct current is applied, solenoids do not cause electromagnetic interference nor is their operation impaired by electromagnetic interference.
 - Other behavior can result when a modulated direct current (e.g. PWM signal) is applied. Potential electromagnetic interference for persons (e.g. persons with a pacemaker) and other components must be tested by the machine manufacturer.
- ► The pressure cut-off is not a safeguard against pressure overload. Be sure to add a pressure relief valve to the hydraulic system.
- Please note the details regarding the tightening torques of port threads and other threaded joints in the instruction manual.

► Working ports:

- The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
- The working ports and function ports are only intended to accommodate hydraulic lines.

72

Safety instructions

- ▶ During and shortly after operation, there is a risk of getting burnt on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
- ▶ Moving parts in control equipment (e.g. valve spools) can, under certain circumstances get stuck in position as a result of contamination (e.g. impure hydraulic fluid, abrasion, or residual dirt from components). As a result, the hydraulic fluid flow and the build-up of torque in the axial piston unit can no longer respond correctly to the operator's specifications. Even the use of various filter elements (external or internal flow filtration) will not rule out a fault but merely reduce the risk. The machine/ system manufacturer must test whether remedial measures are needed on the machine for the application concerned in order to set the consumer being driven to a safe position (e.g. safe stop) and if necessary to ensure it is properly implemented.
- ► Moving parts in high-pressure relief valves may in certain circumstances become stuck in an undefined position due to contamination (e.g. impure hydraulic fluid). This can result in restriction or loss of the load holding function in lifting winches.
 - The machine/system manufacturer must check whether additional measures are required on the machine for the relevant application in order to keep the load in a safe position and ensure they are properly implemented.

Bosch Rexroth AG

Mobile Applications Glockeraustraße 4 89275 Elchingen, Germany Tel. +49 7308 82-0 info.ma@boschrexroth.de www.boschrexroth.com © Bosch Rexroth AG 2017. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.